f(x)= x^2 + (x + 1)^2
= x^2 + x^2 + 2x + 1
= x^2 + x + 1/4 + x^2 + x + 1 + 1/2
= (x + 1/2)^2 + (x + 1/2)^2 + 1/2
= 2(x+1)^2 + 1/2
có: 2(x+1)^2 ≥ 0
2(x+1)^2 + 1/2 ≥ 1/2 > 0
vậy f(x) ko có nghiệm
f(x)= x^2 + (x + 1)2
= x2 + x2 + 2x + 1
= x2 + x + \(\dfrac{1}{4}\) + x2 + x + 1 + \(\dfrac{1}{2}\)
= (x + 1/2)2 + (x + 1/2)2 + \(\dfrac{1}{2}\)
= 2(x+1)2 + \(\dfrac{1}{2}\)
có: 2(x+1)2 ≥ 0
2(x+1)2 + \(\dfrac{1}{2}\) ≥ \(\dfrac{1}{2}\) > 0
vậy: f(x)= x2 + (x + 1)2 ko có nghiệm