Cho tam giác ABC lấy M, N ,P sao cho vectơ MB = 3 vectơ MC ; vectơ Na + 3 vectơ NC = vectơ 0 và vectơ P A + vectơ PB = vectơ 0
a) tính vectơ PM và vectơ PN theo vectơ AB ; vectơ AC
b) Chứng minh rằng M, N,P thẳng hàng
Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3 MC.
a) Tìm mối liên hệ giữa hai vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \)
b) Biểu thị vectơ \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Tham khảo:
a) M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.
Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB} = - 3.\overrightarrow {MC} \)
b) Ta có: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \)
Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM} = \dfrac{3}{4}\overrightarrow {BC} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\overrightarrow {BC} \)
Lại có: \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
Vậy \(\overrightarrow {AM} = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
Bài 14. Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho EB = 2EA; M là điểm thỏa mãn vecto ME + 3vecto MC =vecto 0. Biểu diễn vectơ MA qua các vectơ MB , MC .
\(\overrightarrow{ME}+3\overrightarrow{MC}=\overrightarrow{0}\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}\)
\(EB=2EA\Rightarrow\overrightarrow{BE}=2\overrightarrow{EA}\)
Ta có: \(\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BE}=\overrightarrow{MB}+2\overrightarrow{EA}=\overrightarrow{MB}+2\left(\overrightarrow{EM}+\overrightarrow{MA}\right)=\overrightarrow{MB}-2\overrightarrow{ME}+2\overrightarrow{MA}\)
\(\Rightarrow3\overrightarrow{ME}=\overrightarrow{MB}+2\overrightarrow{MA}\Rightarrow\overrightarrow{ME}=\dfrac{1}{3}\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{MA}\)
\(\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}=-\dfrac{1}{9}\overrightarrow{MB}-\dfrac{2}{9}\overrightarrow{MA}\)
\(\Rightarrow\dfrac{2}{9}\overrightarrow{MA}=-\dfrac{1}{9}\overrightarrow{MB}-\overrightarrow{MC}\Rightarrow\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{MB}-\dfrac{9}{2}\overrightarrow{MC}\)
Cho tam giác ABC có trọng tâm G . Gọi I là trung điểm CG và M,N là các điểm thỏa mãn vectơ MN = vectơ MA + vectơ MB + 4 vectơ MC . Chứng minh rằng 3 điểm M, I , N thẳng hàng.
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)
\(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng
Cho tam giác ABC có G là trọng tâm. Gọi M thuộc BC sao cho vectơ BM bằng 2 lần vectơ MC. Chứng minh rằng vectơ AB + 2 lần vectơ AC = 3 lần vectơ AM. Chứng minh rằng vectơ MA+ vectơ MB + vectơ MC = 3 lần vectơ MG
Cho tam giác ABC lấy các điểm M, N, P sao cho vectơ MB - 2 véctơ MC =vectơ NA + 2vectơ NC =vectơ PA +vectơ PB = vectơ O
a. Tính vecto PM, PN theo hai vectơ AB và AC
b. CMR: ba điểm M, N, P thẳg hàg
Cho tam giác ABC. Hỏi có bao nhiêu điểm M sao cho vectơ tổng M A → + M B → + M C → có độ dài bằng 3?
A. Có duy nhất một điểm
B. Có hai điểm
C. Có vô số điểm và tập hợp các điểm M là một đường thẳng
D. Có vô số điểm và tập hợp các điểm M là một đường tròn
cho tam giác ABC. lấy điểm M bất kì trong tam giác. chứng minh rằng:
s(MBC) *vectơ MA + s(MAC)* vectơ MB + s(MAB) * vectơ MC = vectơ 0
chú thích: s(MBC) là diện tích tam giác MBC
thanks nhìu