Cho \(M=x^2+y^2+2z^2+t^2\); với x, y, z, t là số tự nhiên. Hãy tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x, y, z, t biết rằng: \(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\)
cho m=x^2+y^2+2z^2+t^2. Tìm min M với x,y,z,t nguyên và x^2 -y^2 +t^2=21; x^2 +3y^2+4z^2=101
cho x, y, z khác 0 thoả mãn : 2xy+yz=3
tìm GTLN của A= 6x^2z^2/y^2 + 8y^2z^2/x^2 + 10x^2y^2/z^2
Làm phép tính chia :
a, [ 16 ( x+y )^5 - 12 ( x+y )^5 ] : 4 ( x+y )^2
b, [ 2 ( x-y+2z )^4 + 3 ( y-x-2z )^2 ] : 1/2 ( x-y+2z )^2
Giúp mình với mình đang cần gấp
Cho 3 số thực không âm x, y,z thỏa mãn x + y + z = 3. Tìm min của
\(A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)
p. tích thành tổng 2 bình phương rồi mincopxki
Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)
Một cách tương tự :
\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)
\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)
\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)
\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)
\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)
cho x+y+z=0.tính M=2.(x^3+y^3)+2z(z^2-3xy)
Lời giải:
Vì $x+y+z=0$ nên $x+y=-z$. Do đó:
$M=2(x^3+y^3)+2z(z^2-3xy)$
$=2[(x+y)^3-3xy(x+y)]+2z^3-6xyz$
$=2[(-z)^3+3xyz]+2z^3-6xyz=-2z^3+6xyz+2z^3-6xyz=0$
Cho 3 số thực dương thỏa mãn điều kiện \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\) Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{x^2z^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Lời giải:
\(\frac{1}{x^2}=1-\frac{1}{y^2}-\frac{1}{z^2}<1\Rightarrow x^2-1>0\)
\(P=\frac{y^2z^2}{x(y^2+z^2)}+\frac{x^2z^2}{y(x^2+z^2)}+\frac{x^2y^2}{z(x^2+y^2)}\)
\(=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{x^2}+\frac{1}{z^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(1-\frac{1}{x^2})}+\frac{1}{y(1-\frac{1}{y^2})}+\frac{1}{z(1-\frac{1}{z^2})}\)
\(=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\)
Xét đánh giá sau:
\(\frac{x}{x^2-1}-\frac{3\sqrt{3}}{2x^2}=\frac{(x-\sqrt{3})^2(2x+\sqrt{3})}{2x^2(x^2-1)}\geq 0, \forall x^2>1\)
\(\Rightarrow \frac{x}{x^2-1}\geq \frac{3\sqrt{3}}{2x^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow P=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\geq \frac{3\sqrt{3}}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3\sqrt{3}}{2}\)
Vậy \(P_{\min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\sqrt{3}\)
SOS get it <(")
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)->\left(a;;bc\right)\text{for}\left(a;b;c>0\text{and}a^2+b^2+c^2=1\right)\)
\(\text{Khido}P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(\text{Ta se cm}\sum_{cyc}\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}}{2}\)\(\text{Viet lai BDT can chung minh}\)
\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2\sqrt{x^2+y^2+z^2}}\)
\(\text{Chuan hoa}a^2+b^2+c^2=3\text{ta can cm:}\)
\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{3-a^2}-\frac{1}{2}+\frac{b}{3-b^2}-\frac{1}{2}+\frac{c}{3-c^2}-\frac{1}{2}\ge0\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a}{3-a^2}-\frac{1}{2}-\frac{1}{2}\left(x^2-1\right)\right)\ge0\)
\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}+\frac{b\left(b+2\right)\left(b-1\right)^2}{3-b^2}+\frac{c\left(c+2\right)\left(c-1\right)^2}{3-c^2}\ge0\)
Cho ba số dương x,y,z thỏa mãn x + y + z = \(\dfrac{2019}{\sqrt{5}}\). Tìm GTNN của biểu thức : H = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
Cho x,y,z thỏa mãn \(x^2-2y=-1\); \(y^2+1=2z\) ; \(2z^2=4x-2\)
Tính \(x^{2015}+y^{2015}+z^{2015}\)
Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)
\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)
\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)
Cộng (1)(2)(3) theo vế:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)
=> x-1=0; y-1=0; z-1=0
=>x=y=z
=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)
x^2-2y=-1=>x^2-2y+1=0
y^2+1=2z=>y^2-2z+1=0
2z^2=4x-2=>z^2-2x+1=0
cộng vế với vế của 3 pt
ta có x^2-2y+1+y^2-2z+1+z^2-2x+1=0
=>(x-1)^2+(y-1)^2+(z-1)^2=0
=>x-1=0; y-1=0; z-1=0;
=>x=y=z=1
=>x^2015+y^2015+z^2015=3
Cho \(x^2+y^2+2z^2+2t^2=1\)
Tìm Max M=(x+z)(y+t)
Cho \(x^2+y^2+2z^2+2t^2=1\)
Tìm Max M=(x+z)(y+t)