Cho cấp số nhân u n với u 1 = 3 ; q = - 2 . Số 192 là số hạng thứ mấy của u n ?
A. Số hạng thứ 7.
B. Không là số hạng của cấp số đã cho.
C. Số hạng thứ 5.
D. Số hạng thứ 6.
Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
1. Một trường coa 1000 hs. HS cấp 1 là 480 em. Số HS cấp 2 bằng 2/3 số HS cấp 1. Còn lại là số HS cấp 3
a. Tính tỉ số phần trăm của số HS cấp 1 với số HS toàn trường?
b. Số HS cấp 2 chiếm bao nhiêu phần trăm số HS toàn trường?
c. Số HS cấp 3 chiếm bao nhiêu phần trăm số HS toàn trường?
2. Một trường có 1856 HS. 989 em đặt HS giỏi, 899 em đặt HS khá
a. Số HS giỏi chiếm bao nhiêu phần trăm số HS toàn trường?
b. Số HS khá chiếm bao nhiêu phần trăm học sinh toàn trường?
cho (Un) là cấp số cộng U3 +U13=80 .tổng 15 số hạng đầu tiên của cấp số cộng đố bằng bao nhiêu
Cho cấp số nhân ( u n ) có u n = 2 ( - 3 ) n + 1 . Tìm công bội q của cấp số nhân đó
A. q = 6 ( 3 + 1 )
B. q = - 6 ( 3 + 1 )
C. q = 3
D. q = - 3
Ai đó làm ơn giúp mình với ạ, mình cảm ơn rất nhiều 1.Cho cấp số nhân(Un). Tìm U1 và q. Biết rằng a. U1 + u6= 165; u3 + u4=60 2. Tìm số hạng đầu và công bội của cấp số nhân, biết a. U4- u2= 72; U5- u3=144 b. u1- u3+u5=65;u1+u7=325 c. u3+u5=90; u2-u6=240 d. u1+u2+u3=14; u1.u2.u3=64
Để tìm U1 và q, ta sử dụng hệ phương trình sau:
U1 + U6 = 165U3 + U4 = 60Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4
Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)
Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1
Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)
Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.
Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:
a. U4 - U2 = 72 U5 - U3 = 144
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72
Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)
Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
b. U1 - U3 + U5 = 65 U1 + U7 = 325
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1
Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)
Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.
c. U3 + U5 = 90 U2 - U6 = 240
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240
Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)
Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2
Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64
Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.
Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.
một số được gọi là siêu nguyên tố khi nó bớt đi một chữ số sau cùng mà nó vẫn là số nguyên tố. nếu bớt một lần thì gọi là siêu nguyên tố cấp 1, nếu bớt hai lần thì gọi là siêu nguyên tố cấp độ 2, nếu bớt ba lần thì gọi là siêu nguyên tố cấp độ 3,..
hãy viết chương trình tìm các siêu nguyên tố cấp độ 2 của n số tự nhiên (với n<=10000) và in ra file xuat.txt
help me! giúp mk vs!
function NT(n: integer): boolean;
var i: integer;
begin
NT:=true;
for i:=2 to n-1 do
if n mod i = 0 then NT:=false;
end;
var i: integer;
begin
write('Cac so sieu nguyen to cap do 2: ');
for i:=100 to 10000 do
if (NT(i) and NT(i div 10) and NT(i div 100)) then write(i:6);
readln
end.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Cho cấp số nhân \(\left(u_n\right)\) biết \(\left\{{}\begin{matrix}3\sqrt{3}u_2+u_5=0\\u^2_3+u^2_6=63\end{matrix}\right.\)
Tính tổng \(S=\left|u_1\right|+\left|u_2\right|+\left|u_3\right|+...+\left|u_{15}\right|\)
Cho cấp số cộng (un) có u4=-12, u14=18. Tính tổng 16 số hạng đầu tiên cua cấp số cộng này
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
Cho phân số\(P=\frac{3n+5}{n+2}\)
Chứng tỏ P là phân số tối giản với mọi n là số tự nhiên khi UCLN ( 3n+5; n+2 ) = 1
LÀM ƠN GIÚP MÌNH VỚI !!! MÌNH CẦN CỰC KÌ KHẨN CẤP !!!
UCLN (3n+5:n+2)=1 thì hai số trên nguyên tố cùng nhau rùi .không rút gon được nữa => tối giản
Gọi d là UCLN ( 3n+5;n+2)
Ta có:\(\hept{\begin{cases}3n+5⋮d\\n+2⋮d\end{cases}}\)
\(n+2⋮d\Rightarrow3\left(n+2\right)\)
hay \(3n+6⋮d\)
ta xét hiệu: \(3n+6-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy P là phân số tối giản với mọi n là STN khi UCLN (3n+5;n+2)=1
Chúc bạn hk tốt!!!
Gọi UWCLN(3n+5,n+2)=d
=>3n+5 chia hết cho d
=>n+2 chia hết cho d
=>3(n+2)chia hết cho d
=> 3n+6 chia hết cho d
=>( 3n+6) - (3n+5)chia hết cho d
=>3n+6-3n-5 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy P tối giản với mọi n
............chúc bạn học tốt..................