Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: y = sin6x + cos6x
A: max y = 1; min y = 1 2
B: max y = 1; min y = - 1 2
C: max y = 1; min y = 1 4
D: Đáp án khác
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm tập giá trị T của hàm số y = sin6x + cos6x?
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 1 + sin 6 x + cos 6 x 1 + sin 4 x + cos 4 x . Tính giá trị của 5 M - 6 m - 1 2017
A. 0
B. 2017
C. 1
D. -1
Sử dụng công thức lượng giác để biến đổi hàm số về dạng: f t = 2 - 3 4 t 1 - 1 2 t
Đặt t = sin 2 2 x ; 0 ≤ t ≤ 1
Xét hàm số f t = 2 - 3 4 t 1 - 1 2 t = 3 t - 8 2 t - 8 ; t ∈ [0;1].
Ta có f ' t = - 8 2 t - 8 2 < 0 , ∀ t ∈ 0 ; 1 nên f(t) đồng biến trên [ 0;1 ].
Do đó M = f(0) = 1; m = f(1) = 5 6
Vậy 5 M - 6 m - 1 2017 = 5 - 5 - 1 2017 = -1
Đáp án D
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
a) \(y=-5sinx+6\)
b) \(y=-cosx-4\)
c) \(y=\sqrt{3}cosx+8\)
d) \(y=-cos3x+15\)
e) \(y=sin6x+2024\)
a: -1<=sinx<=1
=>5>=-5sinx>=-5
=>11>=-5sinx+6>=1
=>1<=y<=11
\(y_{min}=1\) khi sin x=1
=>x=pi/2+k2pi
\(y_{max}=11\) khi sin x=-1
=>x=-pi/2+k2pi
b: \(-1< =cosx< =1\)
=>\(1>=-cosx>=-1\)
=>\(-3>=-cosx-4>=-5\)
=>\(-3>=y>=-5\)
\(y_{min}=-5\) khi cosx=1
=>x=k2pi
\(y_{max}=-3\) khi cosx=-1
=>x=pi+k2pi
c: \(-1< =cosx< =1\)
=>\(-\sqrt{3}< \sqrt{3}\cdot cosx< =\sqrt{3}\)
=>\(-\sqrt{3}+8< =y< =\sqrt{3}+8\)
\(y_{min}=-\sqrt{3}+8\) khi cosx=-1
=>x=pi+k2pi
\(y_{max}=\sqrt{3}+8\) khi cosx=1
=>x=k2pi
d: \(-1< =cos3x< =1\)
=>\(1>=-cos3x>=-1\)
=>\(16>=y>=14\)
y min=14 khi cos3x=1
=>3x=k2pi
=>x=k2pi/3
y max=16 khi cos3x=-1
=>3x=pi+k2pi
=>x=pi/3+k2pi/3
e: -1<=sin6x<=1
=>-1+2024<=sin6x+2024<=1+2024
=>2023<=y<=2025
y min=2023 khi sin6x=-1
=>6x=-pi/2+k2pi
=>x=-pi/12+kpi/3
y max=2025 khi sin6x=1
=>6x=pi/2+k2pi
=>x=pi/12+kpi/3
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bạc hai y = -2x2 + 4x + 3
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = -3x2 + 2x + 1 trên (1;3)
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = x2 - 4x - 5 trên (-1;4)
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Câu 3:
$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$
Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$
Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$
Tìm giá trị lớn nhất của hàm số sau trên [-1; 1]
A. max y = 0 B. max y = 2
C. max y = 4 D. max y = 2
Tập xác định -1 ≤ x ≤ 1, do đó 1 – x ≤ 2, 1 + x ≤ 2 ⇒ ( 1 - x ) + ( 1 + x ) ≤ 2 2 < 4 nên C sai; Ngoài ra vì 0 và 2 đều nhỏ hơn 2 nên chỉ cần xét xem 2 có phải là giá trị của hàm số không, dễ thấy khi x = 0 thì y = 2. Vậy max y = 2
Đáp án: B
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau y = sinx - cos x
A: max y = 1; min y = - 1 2
B: max y = 1; min y = -1
C: max y = 1; min y = 0
D: Đáp án khác
Giá trị nhỏ nhất của sin 6 x + c o s 6 x là:
A. 0
B. 1 2
C. 1 4
D. 1 8
Đáp án: C
Ta có:
sin 6 x + c o s 6 x = ( sin 2 x ) 3 + ( cos 2 x ) 3
= ( sin 2 x + c o s 2 x )( sin 4 x - sin 2 x cos 2 x + c o s 4 x )
= sin 4 x - sin 2 x cos 2 x + c o s 4 x
= ( sin 2 x + cos 2 x ) 2 - 3 sin 2 x cos 2 x
= 1 - 3 sin 2 x cos 2 x
= 1 - (3/4) sin 2 2 x
Vì
Vậy giá trị nhỏ nhất của sin 6 x + c o s 6 x là 1/4
Dấu “=” xảy ra ⇔ sin 2 2 x = 1 ⇔ sin2x = 1 hoặc sin2x = -1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: y = x 4 + x 2 trên khoảng (− ∞ ;+ ∞ )
trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4