Với n thuộc N* ; kí hiệu An = (-1)^n . n^2.n.1/ n!
Tính S = A1 + A2 + A3 +...+ A2007
BẠN NÀO GIẢI ĐÚNG BÀI NÀY THEO CÁCH LỚP 7 MIK GỌI SƯ PHỤ MỘT TUẦN LUÔN
VIỆT NAM NÓI LÀ LÀM
tính tổng phần tử của các tập hợp sau:
F={1;2;3;...; n} với n thuộc N
G= { 1;6;11;...;n+5} với n thuộc N
H= { 1;7;13;...;n+6} với n thuộc N
Tổng các phần tử của tập hợp F là:
\(\left(n+1\right)\cdot\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
Tổng các phần tử của tập hợp G là:
\(\left(n+5+1\right)\cdot\left[\left(n+5-1\right):5+1\right]:2\)
\(=\left(n+6\right)\cdot\left[\dfrac{\left(n+4\right)}{5}+\dfrac{5}{5}\right]:2\)
\(=\left(n+6\right)\cdot\dfrac{n+4+5}{5}:2\)
\(=\dfrac{\left(n+6\right)\left(n+9\right)}{10}\)
Tổng các phần tử của tập hợp H là:
\(\left(n+6+1\right)\cdot\left[\left(n+6-1\right):6+1\right]:2\)
\(=\left(n+7\right)\cdot\left(\dfrac{n+5}{6}+1\right):2\)
\(=\left(n+7\right)\cdot\left(\dfrac{n+5}{6}+\dfrac{6}{6}\right):2\)
\(=\left(n+7\right)\cdot\left(\dfrac{n+11}{6}\right):2\)
\(=\dfrac{\left(n+7\right)\left(n+11\right)}{12}\)
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
Tìm :
a) ƯCLN ( n ; n + 1 ) với n thuộc N*
b) BCNN ( n ; n + 1 ) với n thuộc N*
c) BCNN ( n ; n + 2003 ) với n thuộc N*
a, Gọi \(d=ƯCLN\left(n,n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n,n+1\right)=1\)
b, Ta có :
\(ƯCLN\left(n,n+1\right)=1\left(cmt\right)\)
\(\Leftrightarrow n+1;n\) nguyên tố cùng nhau
\(\Leftrightarrow BCNN\left(n+1;n\right)=\left(n+1\right)n=n^2+n\)
a, Gọi d=ƯCLN(n,n+1)d=ƯCLN(n,n+1)
=> \(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
⇔{n⋮dn+1⋮d
⇔1⋮d⇔1⋮d
⇔d=1⇔d=1
⇔ƯCLN(n,n+1)=1⇔ƯCLN(n,n+1)=1
b, Ta có :
ƯCLN(n,n+1)=1(cmt)ƯCLN(n,n+1)=1(cmt)
⇔n+1;n⇔n+1;n nguyên tố cùng nhau
⇔BCNN(n+1;n)=(n+1)n=n^2+n
Câu 4: tìm ƯC của:
a) n và n+1 với n thuộc N
b)5n+6 và 8n+7 với n thuộc N
c)3n+2 và 4n+3 với n thuộc N
Câu 1:
Gọi $d=ƯC(n, n+1)$
$\Rightarrow n\vdots d; n+1\vdots d$
$\Rightarrow (n+1)-n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯC(n, n+1)=1$
Câu 2:
Gọi $d=ƯC(5n+6, 8n+7)$
$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$
$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$
$\Rigtharrow 13\vdots d$
$\Rightarrow d\left\{1; 13\right\}$
Câu 3:
Gọi $d=ƯC(3n+2, 4n+3)$
$\Rightarrow 3n+2\vdots d; 4n+3\vdots d$
$\Rightarrow 3(4n+3)-4(3n+2)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Trong các phân số dưới đây, những phân số nào tối giản:
A.n/n+1(với n thuộc N*) B.3n+3/6n+3(với n thuộc N*) C.2n-2/2n+2 (với n thuộc N*,n>2) D.2n-1/2n+1(với n thuộc N*)A và D nha
tick mik vs
Tìm :
a) ƯCLN ( n ; n + 1 ) với n thuộc N*
b) BCNN ( n ; n + 1 ) với n thuộc N*
c) BCNN ( n ; n + 2003 ) với n thuộc N*
Kí hiệu n! là tích của n số tự hiên liên tiếp từ 1 đến n. Vậy n là:
A. Với mọi n thuộc số tự nhiên: n! = n(n-1)
B. Với mọi n thuộc STN: (n-1)n = (n-1)!
C. Với mọi n thuộc STN: n! = (n-1)! + 1
D. Với mọi n thuộc STN: n!(n-1)! = 1
chứng minh rằng
a. nx(n+3)x(n+7)x(n+11)x(n+14) chia hết cho 5 với mọi n thuộc N
b. nx(n+1)x(n+5) chia hết cho 3 với mọi n thuộc N
c. nx(n+10)x(n+14) chia hết cho 3 với n thuộc N
d. nx(n-1)x(n+1)x(5+3)xnx97 chia hết cho 3 với n thuộc N*
Chứng minh phân số sau là phân số tối giản:
a, 4n+8/2n+3 với n thuộc N
b, 7n+4/9n+5 với n thuộc N
c, 12n+1/30n+2 với n thuộc N
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)