cho đa thức f9x)=ax^2+bx+c; g(x)=x(x+2)-(x+2)
xác định a, b,c để f(x)=g(x)
help me mai thầy mk kiểm tra rồi
cho đa thức h(x) = ax^2+bx+c với c>4^a. CMR h(-2) và h(2) không đồng thời nhận giá trị âmcho đa thức h(x) = ax^2+bx+c với c>4^a. CMR h(-2) và h(2) không đồng thời nhận giá trị âmcho đa thức h(x) = ax^2+bx+c với c>4^a. CMR h(-2) và h(2) không đồng thời nhận giá trị âm
đã thức ở lớp này đã học đâu ?
cho đa thức x2-5x+1 có 2 nghiệm là 2 nghiệm của đa thức x3+ax2+bx+c, chứng minh đa thức ax3+bx2+6cx -4 có ít nhất 2 nghiệm phân biệt
bạn sửa 2 nghiệm phân biệt thành 1 nghiệm nhá
Cho đa thức ax^2+bx+c . Tìm hệ số a,b biết đa thức có hai nghiệm x=-2 , x=3
Pt có 2 no x=-2,x=3
Thì x=-2 hoặc x=3 làm cho ax²+bx+c=0
`=>ax^2+bx+c=(x+2)(x-3)`
`<=>ax^2+bx+c=x^2-x-6`
`=>a=1,b=-1,c=-6`
Cho đa thức A(x)=ax^2+bx+c . Tìm a,b,c biết đa thức A(0)=4 và đa thức A(x) có nghiệm =1và 2
cho đa thức m(x)=ax^2+bx+c biết a+c=b. chứng tỏ x= -1 là một nghiệm của đa thức M(x)
có : M(x) = ax^2+ bx+ c
=> M(-1) = a.(-1)^2+ b.(-1) + c
M(-1)= a+c-b
mà a+c=b
=> M(-1) = b-b=0
=> x=-1 là nghiệm của đa thức M(x)
cho đa thức P(x) = x^3 + ax^2 + bx + c. Biết rằng đa thức P(x) có nghiệm và a + 2b + 4c = -1/2
P(0) = -1
=> c = -1 (1)
P(1) = 3 <=> a + b + c = 3 (2)
P(2) = 1 <=> 4a + 2b + c = 1 (3) lưu ý đây chỉ là mẫu
từ (1),(2),(3) ta có hpt
{a+b=44a+2b=2⇔{a=−3b=7
tìm các hệ số a,b,c sao cho đa thức \(3x^4+ax^2+bx+c\) chi hết cho đơn thức x-2 và chia cho đa thức \(x^2-1\) dư -7x-1
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)