Cho f(x) = ax2 + bx + c.
CMR: Nếu f(1) = 2012; f(-2) = f(3) = 2036 thì đa thức f(x) vô nghiệm.
Giúp tớ nhanh nhé mấy pợn!
cho đa thức f(x)=ax2+bx+c .cmr nếu f(x) nhận 1 và -1 là nghiệm thì a và c đối nhau
Cho f(x) = ax2+bx+c, biết f(4) = f(-4). CMR: f(x) = f(-x)
\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)
\(f\left(4\right)=a.\left(-4\right)^2+b.\left(-4\right)+c=16a-4b+c\)
\(f\left(4\right)=f\left(-4\right)\Rightarrow16a+4b+c=16a-4b+c\\ \Rightarrow16a+4b+c-16a+4b-c=0\\ \Rightarrow8b=0\\ \Rightarrow b=0\)
Ta có: \(f\left(x\right)=ax^2+bx+c=ax^2+0x+c=ax^2+c\) (1)
\(f\left(-x\right)=a\left(-x\right)^2+b\left(-x\right)+c=ax^2+0\left(-x\right)+c=ax^2+c\) (2)
Từ (1), (2)\(\Rightarrow f\left(x\right)=f\left(-x\right)\)
cho đa thức f(x)=ax^+bx+c
cmr nếu f( 1)=2012;f(-2)=f(3)=2036thif đa thức F(x) vô nghiệm
tìm a,b,c từ F(1),F(-2)=f(3)=2036
ta dc F(x)=4x^2+-4x+2012=[(2x)^2-2(2x).1+1]+2011
=(2x-1)^2+2011
ta thấy \(\left(2x-1\right)^2\ge0\)
(2x-1)\(^2\)+2011\(\ge\)2011
suy ra F(x)\(\ne\)0
vậy f(x) vô nghiệm
cho đa thức f(x)=ax^2+bx+c
a) biết f(0)=0,f(1)=2013 và f(-1)=2012.tính a,b,c
b)CMR nếu f(1)=2012,f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm
a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)
Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)
\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)
Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)
cho đa thức f(x)=ax^2+bx+c
a) nếu biết 14a+2b+3c=0. CMR:3 số f(-2);f(1);f(3) có ít nhất một nghiệm không âm
b)CMR nếu f(1)2012;f(-2)=f(3)=2036 thì đa thức f(x) voo nghiệm
cho đa thức f(x)=ax^2+bx+c
a) nếu biết 14a+2b+3c=0. CMR:3 số f(-2);f(1);f(3) có ít nhất một nghiệm không âm
b)CMR nếu f(1)2012;f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm
cho đa thức f(x)=ax^2+bx+c
a)nếu biết 14a+2b+3c=0. CMR 3 số f910;f(-2);f(3) có ít nhất một số không âm
b)CMR nếu f(1)=2012; f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm
Cho đa thức f(x) = ax2 + bx + c ⋮ 5
cmr a; b;c ⋮ 5
Ta có:
Đa thức: \(f\left(x\right)=ax^2+bx+c\) ⋮ 5
\(\Rightarrow f\left(x\right)=5\cdot\left(\dfrac{a}{5}x^2+\dfrac{b}{5}x+\dfrac{c}{5}\right)\) ⋮ 5
\(\Rightarrow a,b,c\in B\left(5\right)\)
Vậy khi f(x) chia hết cho 5 thì a,b,c chia hết cho 5
f=84[05\66\ơ515[52[ư4[\
7;ơ4411[ư1[5
4
4['\
vì
ik
k\uyke]
'uy
'^k''m '\7ys'tfdh'se\ử'ý'0rtư
cho đa thức F(x)=ax2+bx+c với a là số nguyên dương và f(5)-f(4)=2023.
cmr f (9)-f(2)là hợp số
cho hàm số y = f(x) = ax2 + bx+ c .Tìm a,b,c nếu biết f(0) =1 ; f(1) = 2; f(2) = 3