`\triangle ABC` vuông ở `A` có `AB=6cm; cos C = 3/5`. Tính AC
`\triangle ABC` vuông ở `A` có `AB=6cm; tan B = 1/3`. Tính `BC`.
Xét ΔABC vuộng tại A:
\(\tan B=\dfrac{AC}{AB}=\dfrac{AC}{6}=\dfrac{1}{3}\\ \Rightarrow AC=\dfrac{6}{3}=2cm\\\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{6^2+2^2}=2\sqrt{10}cm\)
Tam giác `ABC` có đường AH thỏa mãn `AH^2 = CH.BH` thì khẳng định nào đúng?
`\triangle ABC` vuông ở `A`
`AB^2 = BH.BC`
`\triangle AHB` đồng dạng `\triangle CHA`
`AB^2 +AC^2 = BC^2`
Cho tam giác ABC vuông ở `A,AB=3;AC=4`. Đường cao `AH`. Tính `AH`?
Câu 1: Cả 4 câu đều đúng
Câu 2:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4
cho `\triangle ABC` vuông ở A, đường cao `AH`. Biết 9HB=4HC, AH=6cm. Tính CB.
9HB=4HC
=>\(\dfrac{HB}{4}=\dfrac{HC}{9}=k\)
=>\(HB=4k;HC=9k\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(36k^2=36\)
=>\(k^2=1\)
=>k=1
=>HB=9(cm)
`\triangle ABC` vuông ở `A` có `\hat{B} = 30^o; AB=10cm`. Tính `AC`.
\(AC=10\cdot tan\left(30^o\right)=\dfrac{10\sqrt{3}}{3}\)
cho `\triangle ABC` vuông ở A, AB=4cm, tia phân giác trong và ngoài ở đỉnh B của `\triangle ABC` cắt `AC` ở `D` và `E`. Biết AD=2cm. Tính DE.
cho `\triangle ABC` vuông ở A, AB=4cm, tia phân giác trong và ngoài ở đỉnh B của `\triangle ABC` cắt `AC` ở `D` và `E`. Biết AD=2cm. Tính DE.
Ta có:
2 tia phân giác ngoài và trong tạo với nhau 1 góc bằng 90 độ
=> \(\widehat{DBE}=90^o\)
Áp dụng định lý Pytago vào tam giác DAB
=> \(DB=\sqrt{AB^2+AD^2}=2\sqrt{5}cm\)
ÁP dụng hệt thức lượng vào tam giác vuông DBE
=> \(DB^2=DA.DE\Rightarrow DE=\dfrac{DB^2}{AD}=\dfrac{\left(2\sqrt{5}\right)^2}{2}=10cm\)
cho `\triangle ABC` vuông ở A, đường cao AH. biết `AB=\sqrt{3}cm; HC=2cm`. Tính `BH`.
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>BH(BH+2)=3
=>\(BH^2+2HB-3=0\)
=>(BH+3)(BH-1)=0
=>BH=-3(loại) hoặc BH=1(nhận)
Vậy: BH=1cm
Given the right triangle ABC (A^ = 90o), BD is the bisector of the angle at B ( D of AC ). If AD = 6cm and AB = 12cm then the area of the right triangle ABC is ...... cm2.
I don't know English very much so i can't answere your question. Sory about that :(
Given the right triangle ABC (A^ = 90o), BD is the bisector of the angle at B ( D of AC ). If AD = 6cm and AB = 12cm then the area of the right triangle ABC is ...... cm2.
Mới học lớp 7 thôi, ko làm được bài nhưng để mk dịch đề thử nhá:
Cho tam giác ABC (A^= 90o), BD là tia phân giác của góc B (D thuộc AC). Nếu AD= 6cm, AB= 12cm thì diện tích của tam giác ABC là .....cm2.