Lời giải:
Có: $\frac{3}{5}=\cos C = \frac{AC}{BC}$
$\Rightarrow BC=\frac{5}{3}AC$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Rightarrow 6^2+AC^2=(\frac{5}{3}AC)^2$
$\Rightarrow 36=(\frac{5}{3}AC)^2-AC^2=\frac{16}{9}AC^2$
$\Rightarrow AC=4,5$ (cm)
Lời giải:
Có: $\frac{3}{5}=\cos C = \frac{AC}{BC}$
$\Rightarrow BC=\frac{5}{3}AC$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Rightarrow 6^2+AC^2=(\frac{5}{3}AC)^2$
$\Rightarrow 36=(\frac{5}{3}AC)^2-AC^2=\frac{16}{9}AC^2$
$\Rightarrow AC=4,5$ (cm)
`\triangle ABC` vuông ở `A` có `AB=6cm; tan B = 1/3`. Tính `BC`.
Tam giác `ABC` có đường AH thỏa mãn `AH^2 = CH.BH` thì khẳng định nào đúng?
`\triangle ABC` vuông ở `A`
`AB^2 = BH.BC`
`\triangle AHB` đồng dạng `\triangle CHA`
`AB^2 +AC^2 = BC^2`
Cho tam giác ABC vuông ở `A,AB=3;AC=4`. Đường cao `AH`. Tính `AH`?
`\triangle ABC` vuông ở `A` có `\hat{B} = 30^o; AB=10cm`. Tính `AC`.
1. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=4cm,AC=9cm. Tính sin B, sin C
2.Cho tam giác ABC vuông tại A, Cos B= an pha, Cos = 4/5. Tính sin, tan,cos
3. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=6cm, BC= 10cm
a. Tính AC,AH. Tỉ số đồng giác góc B,C
b. Gọi E,F lần lượt là hình chiếu H lên AB,AC. CM :AE.AD=AF.AC
c. Tính S tứ giác AEHF
cho `\triangle ABC` vuông ở A, AB=4cm, tia phân giác trong và ngoài ở đỉnh B của `\triangle ABC` cắt `AC` ở `D` và `E`. Biết AD=2cm. Tính DE.
cho `\triangle ABC` vuông ở A, AB=4cm, tia phân giác trong và ngoài ở đỉnh B của `\triangle ABC` cắt `AC` ở `D` và `E`. Biết AD=2cm. Tính DE.
cho tam giác ABC vuông tại A. Đường cao AH. Biết AB = 7,5 cm; AH =6cm . Tính AC; BC ; cos B ; cos C
cho `\triangle ABC` vuông ở A, đường cao `AH`. Biết 9HB=4HC, AH=6cm. Tính CB.
cho tam giác abc có A^=90 độ AB= 6cm và AC = 8cm a/ tính Bc? b/ tính sin B và Tan C? C/ gọi AH là đường cao tam giác ABC , tính cos BAH^,d/ Gọi M là trung điểm Bc từ M kẻ đường thẳng vuông góc với BC cắt AC tại T tính độ dài AT?