cho tam giác nhọn ABC. Từ C,B kẻ 2 đường vuông với AB, AC; chúng cắt nhau ở H. M là trung điểm AB. Trên tia đối MH lấy D sao cho MD=MH
1/ c/m DC vuông AC
2/ từ H kẻ HI vuông BC. trên tia đối IH lấy E sao cho IE=IH
C/M DC=BE
DE song song BC
Cho tam giác ABC nhọn có AB AC, đường cao BH. Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D vả kẻ MK vuông góc với AB tại K. Gọi E là điểm đối xứng với K qua đường thẳng BCa, C m rằng góc BMK Cho tam giác ABC nhọn có AB AC, đường cao BH.Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D và kẻ MK vuông góc với AB tại K. Gọi E là điểm điểm đối xứng với k qua đường thẳng BC.a, C m rằng góc BMK góc CMDTừ đó c m 3 điểm E,M,D thẳng hàngb,Tứ giác BEDH là hình gì Tại sao c, So sánh MK MD và BHd, Cho BH= 8cm, CH= 6cm, AC= 12cmTính chiều cao của tam giác ABC được kẻ từ đỉnh A.
Cho tam giác ABC nhọn có AB AC, đường cao BH. Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D vả kẻ MK vuông góc với AB tại K. Gọi E là điểm đối xứng với K qua đường thẳng BCa, C m rằng góc BMK Cho tam giác ABC nhọn có AB AC, đường cao BH.Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D và kẻ MK vuông góc với AB tại K. Gọi E là điểm điểm đối xứng với k qua đường thẳng BC.a, C m rằng góc BMK góc CMDTừ đó c m 3 điểm E,M,D thẳng hàngb,Tứ giác BEDH là hình gì Tại sao c, So sánh MK MD và BHd, Cho BH 8cm, CH 6cm, AC 12cmTính chiều cao của tam giác ABC được kẻ từ đỉnh A.
Cho tam giác ABC nhọn, đường cao AH, trung tuyến AD. Từ D kẻ DK vuông góc với AB (K thuộc AB) và DI vuông góc với AC (I thuộc AC). a) Chứng minh: BK.BA = BH.BD b) Chứng minh tam giác BKH đồng dạng với tam giác BDA. c) Giả sử BH = 2/3 AB và diện tích tam giác BKH là 64cm2. Tính diện tích tam giác BDA d) Chứng minh DK/DI = AC/AB (“/“ là phân số)
Bài 1: Cho tam giác ABC nhọn có BD vuông góc với AC tại D. CE vuông góc với AB tại E. Chứng minh rằng: BD + CE < AB + AC.
Bài 2: Cho tam giác ABC,điểm D nằm giữa A và C ( BD không vuông góc với AC). Gọi E. và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.
Bài 3: Cho tam giác ABC, từ A hạ AH vuông góc với BC ( H thuộc BC). Chứng minh AH < AB + AC/2
Mọi người giúp mình với ạ. Mình cần gấp. Cảm ơn ạ
Bài 1:
ΔABD vuông tại D
=>BD<AB
ΔACE vuông tại E
=>CE<AC
=>BD+CE<AB+AC
cho tam giác nhọn ABC, kẻ đường cao AH. từ H kẻ HE vuông góc với AB tại E, kẻ HF vuông góc với AC tại F.
a)chứng minh: tam giác AEH đồng dạng với tam giác AHB
Xét tam giác AEH và tam giác AHB, có:
\(\widehat{AHB}=\widehat{AEH}=90^0\)
\(\widehat{A}:chung\)
Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )
cho tam giác abc nhọn có ab< ac. đường cao ah. từ d kẻ de vuông góc với ac. từ c kẻ cf vuông góc với ad. chứng minh ah, de và cf đồng quy
Cho mink hỏi đâu có điểm D mà tuef D kẻ.....bạn
Cho tam giác ABC nhọn có AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Từ B kẻ đường thẳng vuông góc với AB và từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại K.
a) Chứng minh BHCK là hình bình hành
b) Chứng minh H, M, K thẳng hàng
c) Chứng minh tam giác MEF là tam giác cân
Cho tam giác nhọn ABC có AB>ACm đường cao AD. Trên đoạn DC lấy điểm E sao cho DB=DE. a) Chứng minh tam giác ABE cân b) Từ E kẻ EF vuông góc với AC(F thuộc AC). Từ C kẻ CK vuông góc với AE(K thuộc AE). Chứng minh ba đường thẳng AD, EF và CK đồng quy.
a: Xét ΔABE có
AD vừa là đường cao, vừa là trung tuyến
=>ΔABE cân tại A
b: Gọi M là giao của AD và FE
Xét ΔAME có
ED,AF là đường cao
ED cắt AF tại C
=>C là trực tâm
=>M,C,K thẳng hàng
=>ĐPCM
cho tam giác góc nhọn ABC, kẻ đường cao AH.Từ H kẻ HE vuông góc với AB(E thuộc AB),kẻ HF vuông goc AC(F thuộc AC) a)chứng minh rằng AE.AB=AF.AC b) chứng minh tam giác afe đồng dạng tam giác ABC
Cho tam giác cân ABC, cạnh đáy BC. từ B kẻ đường vuông góc với Ab và từ C kẻ đường vuông góc với Ac.2 đường cắt nahu tại M. Chứng minh rằng:
a. tam giác ABM=tam giác ACM