cho a=111..1 (31 chữ số 1); b=111...11(38 chữ số 1)
CM: a. b+2 chia hết cho 3
Cho a=11111....1111 (31 chữ số)
b= 111...111(38 chữ số)
CMR a.b-2 chia hết cho 3
Vì a=11111.....1111 có 31 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3.
\(\Rightarrow\)11111...1111 chia 3 dư 1
Vì b=111....111 có 38 chữ số.Mà cứ 3 chữ số 1 thì chia hết cho 3
\(\Rightarrow\)b chia 3 dư 2
\(\Rightarrow\)a.b chia 3 dư 2
\(\Rightarrow\)a.b - 2 \(⋮3\)
Ta có: a= 1111111..11111 (31 chữ số 1)
a= (1 + 1 + 1 +...+ 1 + 1) ( 31 chữ số 1)
a=31
b= 1 + 1 + 1 +...+ 1 + 1(38 chữ số 1)
b= 38
=> a.b - 2 = 31 . 38 - 2 = 1176
Mà 1176 chia hết cho 3
=> a.b - 2 chia hết cho 3 (đpcm)
cho a=111..111(2006 chữ số 1) b=111...111(1975 chữ số 1)
cmr: a.b+1234 chia hết cho 3
cho a=111..111(2006 chữ số 1) b=111...111(1975 chữ số 1)
cmr: a.b+1234 chia hết cho 3
cho a=111...1111(31 chu so 1) , b=111....111(30 chu so 1)
CMR ab - 2 chia het cho 3
Ta thấy b=111...1(30 chữ số 1) chia hết cho 3
Vì tổng b = 1+1+...+1(30 số hạng 1) = 30 chia hết cho 3
Lại có a = 111...1(31 chữ số 1) chia cho 3 dư 1
=> ab chia 3 dư 1 <=> ab-2 chia hết cho 3
Cho a = 111.......1 ( 1000 chữ số 1 )
b = 111.......1 ( 2020 chữ số 1 )
Chứng minh : ab - 1 ⋮ 3 .
Ta có \(ab-1=1000\cdot2020-1=2019999\)
Mà tổng của 2019999 là 39 => 39 chia hết cho 3 hay ab-1 chia hết cho 3
Chúc bạn học tốt !!
CMR: các số A=111...11 (2n chữ số 1) +n ; B=2n+111..11(n chữ số 1) chia hết cho 3
Cho A=1+11+111+111+1111+...+111...11 ( số hạng cuối được viết bởi 20 chữ số 1).Hỏi A chia cho 9 dư bao nhiêu?
Ta có tổng các chữ số A trên là:
1+2+3+4+...+20
số số hạng của tổng: 20-1+1=20
tổng trên là: (20+1) . 20 : 2=210
ta có 2+1=3 mà 0 : 9
nên A chia cho 9 dư 3
Cho số A=111...111 (2019 chữ số 1) và B= 1000...005(2018 chữ số 0).Chứng minh rằng A*B+1 là 1 số chính phương.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Cho tổng A = 1+11+111+1111+...+111...11 (111...11 có 20 chữ số 1)
Hỏi tổng A chia cho 9 dư bao nhiêu ?
Ta có:
1 chia 9 dư 1 [tổng các cs là 1]
11 chia 9 dư 2 [tổng các chữ số là 2]
.................................
số thứ 9 là 111.......111 chia hết cho 9 [tổng các chữ số là 9]
Cứ vậy ta được 2 vòng tuần hoàn và 2 số lẻ ra. Cụ thể:
1;2;3;4;...;9; 1;2;3;...;9; 1;2 đó là trình tự số dư khi chia 9 ở mỗi số hạng của A
=> tổng các số dư là: (1+2+3+4+...+9)*2 + 1 + 2 = 45*2 + 3 = 93 chia 9 dư 3
Vậy A chia 9 dư 3
P/s: Ai có ý kiến thắc mắc hoặc góp ý vui lòng inbox với mình
Ta có: A = 1 + 11 + 111 + ... + 111...11
Ta thấy: 1 + 11 = 12
1 + 11 + 111 = 123
1 + 11 + 111 + 1111 = 1234
=> A = 1 + 11 + 111 + 1111 + ... + 111...11 = 123...0 ( Lặp lại 20/10 = 2 lần các chữ số 1234567890 ).
Tổng các chữ số là:
45 x 2 = 90 chia hết cho 9
Vậy A chia hết cho 9
Tổng các chữ số của tổng trên là: 1+2+3+4+5+6+7+8+9+10 = (1+10)x10:2=55
Mà 55 chia cho 9 dư 1 nên tổng trên chia cho 9 cũng dư 1.