Đặt a=\(\sqrt[3]{\text{16x-24}}\); b=\(\sqrt[3]{\text{1-3x}}\); c=\(\sqrt[3]{\text{19x-25}}\)
Ta có: b3 +c3=1-3x+19x-25=a3
Ta lại có: a=b+c
=>a3=b3 +c3+3bc(b+c)
0=3bc(b+c)
0=bc(b+c)
=> b=0 hoặc c=0 hoặc b+c=0
sau đó tính tiếp :v
\(\text{Giải PT: }\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
Điều kiên: 5 - x \(\ge\) 0 ; 3x + 1 \(\ge\) 0 <=> 5 \(\ge\) x \(\ge\) -1/3
PT <=> \(\frac{\left(\sqrt{5-x}-\sqrt{3x+1}\right)\left(\sqrt{5-x}+\sqrt{3x+1}\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}=8.\left(x-1\right).\left(x+3\right)\)
<=> \(\frac{5-x-3x-1}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}-8.\left(x-1\right).\left(x+3\right)=0\)
<=> \(\frac{4\left(1-x\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(1-x\right).\left(x+3\right)=0\)
<=> \(\left(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)\right).\left(1-x\right)=0\)
<=> 1 - x = 0 (Vì \(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)>0\) với x thuộc đkxd)
<=> x = 1 (t/m)
Vậy x = 1
Giải phương trình:
\(\sqrt{18x-27}-\dfrac{1}{2}\sqrt{32x-48}+3\sqrt{\dfrac{16x-24}{2}}=1\)
\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)
giải giúp mình mấy phương trình này với
a, \(16x^4+5=6\sqrt[3]{4x^3+x}\)
b,\(\sqrt{\text{-}4x^4y^2+16x^2y+9}-\sqrt{x^2y^2\text{-}2y^2}=2\left(x^2+\frac{1}{x^2}\right)\)
c,\(\sqrt{x^2+2y^2\text{-}6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}=4\)
d, \(2\sqrt[4]{27x^2+24x+\frac{28}{3}}=1+\sqrt{\frac{27}{2}x+6}\)
e, \(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
Giải phương trình:
\(16x^3+\left(8x^2-1\right)\sqrt{4x^2+1}=\frac{15}{16x+9}\)
Đặt \(y=2x+\sqrt{4x^2+1}\)
Giải phương trình sau
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\))
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=9+2\)
\(\Leftrightarrow x=11\left(tm\right)\)
\(\sqrt{16x^2-8x+1}\)+ \(\sqrt{16x^2-24+9}\)
tìm Giá trị nhỏ nhất ~~~~
\(A=0,5\sqrt{48-16x}-\sqrt{3-x}-\sqrt{12}+1\)
a) thay x=2√ 2 vào biểu thưc A
c) Tìm x để A=1
mk đang cần gấp
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
giải pt nghiệm nguyên sau: \(\sqrt{9x^2+16x+96}\)=3x\(^2\)-16x-24
bạn xét về trái rồi tính cho 2 vế bằng nhau roi ket luan la xong dang nay mình mới học buổi chiều de hiểu làm bạn ạ