a) Tìm a, b ϵ * N . Biết rằng: a + b = 256; ƯCLN(a; b) = 64 b) Tìm a, b ϵ * N . Biết rằng: a + b = 13824; ƯCLN(a; b) = 48
a) Tìm a, b ϵ * N . Biết rằng: a + b = 256; ƯCLN(a; b) = 64
b) Tìm a, b ϵ * N . Biết rằng: a + b = 13824; ƯCLN(a; b) = 48
a) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=64\\a+b=256\left(1\right)\end{matrix}\right.\) \(\left(a;b\inℕ^∗\right)\)
Nên ta đặt \(\left\{{}\begin{matrix}a=64x\\b=64y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)
\(\left(1\right)\Rightarrow64x+64y=256\)
\(\Rightarrow64\left(x+y\right)=256\)
\(\Rightarrow x+y=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1.64=64\\b=3.64=192\end{matrix}\right.\) \(\left(thỏa.vì.a+b=256\right)\)
Vậy \(\left(a;b\right)=\left(64;192\right)\)
b) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=48\\a+b=13824\left(1\right)\end{matrix}\right.\) \(\left(a;b\inℕ^∗\right)\)
Nên ta đặt \(\left\{{}\begin{matrix}a=48x\\b=48y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)
\(\left(1\right)\Rightarrow48x+48y=13824\)
\(\Rightarrow48\left(x+y\right)=13824\)
\(\Rightarrow x+y=288\)
\(\Rightarrow\left\{{}\begin{matrix}x=200\\y=88\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=48.200=9600\\b=48.88=4224\end{matrix}\right.\) \(\left(thỏa.vì.a+b=13824\right)\)
Vậy \(\left(a;b\right)=\left(9600;4224\right)\)
b,Theo bài ra ta có:
a + b =13824
ƯCLN (a,b)=48
*Vì ƯCLN (a,b) =48 => a=48x (x < y, ƯCLN (x,y ) = 1)
b=48y
*Mà a + b = 13824
=> 48x + 48y = 13824
48(x + y) = 13824 : 48
x + y = 288
*Ta phải tìm hai số x,y thỏa mãn các điều kiện :
x < y
UCLN (x,y) = 1
x + y =4
=>Với x=1 thì y=3
Lập bảng:
x=1
y=3
a=288 . 1 = 288 thuộc N
b=288 . 3 = 864 thuộc N
Vậy a=288,b=864.
a,Theo bài ra ta có:
a + b =256
ƯCLN (a,b)=64
*Vì ƯCLN (a,b) =64 => a=64x (x < y, ƯCLN (x,y ) = 1)
b=64y
*Mà a + b = 256
=> 64x + 64y = 256
64(x + y) = 256 : 64
x + y = 4
*Ta phải tìm hai số x,y thỏa mãn các điều kiện :
x < y
UCLN (x,y) = 1
x + y =4
=>Với x=1 thì y=3
Lập bảng:
x=1
y=3
a=18 . 1 = 18 thuộc N
b=18 . 3 = 54 thuộc N
Vậy a=18,b=54.
1)vì ƯCLN(a,b)=64,giả sử a>b
\(\hept{\begin{cases}a=64m\\b=64n\end{cases}}\left(m,n\right)=1,m>n\)
ta có a+b=256
=>64m+64n=256
=> 64(m+n)=256
m+n=4
a | 192 | |
m | 3 | |
n | 1 | |
b | 64 |
vậy (a,b) là (192,64),(64,192)
câu b tương tự
có khác 1 tí là
=>48mx48n=13824
=>2304mxn=13824
A. Tìm số tự nhiên a, biết rằng với mọi n ϵ N ta có an = 1
B. Tìm số tự nhiên x mà x50 = x
a: a^n=1
=>a^n=1^n
=>a=1
b: x^50=x
=>x^50-x=0
=>x(x^49-1)=0
=>x=0 hoặc x^49-1=0
=>x=0 hoặc x^49=1
=>x=0 hoặc x=1
tìm a, b, c biết rằng: a(x+2)2 + b(x+3)3 = cx+5 ∀ x ϵ R
Lời giải:
$a(x+2)^2+b(x+3)^3=cx+5$
$\Leftrightarrow bx^3+x^2(a+9b)+x(4a+27b)+(4a+27b)=cx+5$
Để điều này xảy ra với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix} b=0\\ a+9b=0\\ 4a+27b=c\\ 4a+27b=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=0\\ a=0\\ c=0\\ 4a+27b=5\end{matrix}\right. \) (vô lý)
Do đó không tồn tại $a,b,c$ thỏa đề.
tìm a,b ϵ N, biết [a,b]+(a,b)=23
giải giúp tớ với
\(\left[a,b\right]+\left(a,b\right)=23\\ a,b=23:2\\ a,b=11,5\\ \Rightarrow a=11\\ b=5\)
Cho a,b,c ϵ N và a ≠ 0. Chứng tỏ rằng biểu thức P luôn âm, biết: P = a(b-a) - b(a+c) - bc
P = a(b - a) - b(a + c) - bc
= ab - a² - ab - bc - bc
= -a² - 2bc
= -(a² + 2bc)
Do a, b, c ∈ ℕ và a ≠ 0
⇒ a² + 2bc > 0
⇒ -(a² + 2bc) < 0
Vậy P luôn âm
Cho a,b ϵ R. Chứng minh rằng: |a|+|b|≥|a+b|.
Áp dụng tìm x, y, z biết |x-23|+|x-24|+|x-25|+|y-4|+|z-2019|
1/ Tìm a,b ϵ N, biết:
BCNN (a,b) = 300
ƯCLN (a,b) = 15
Vì BCNN (a,b) = 300 và ƯCLN (a,b) = 15
=> a.b = 300 .15 = 4500
Vì ƯCLN (a,b) = 15 nên => a = 15m và b = 15n [ với ƯCLNH ( m;n ) = 1 ]
và a+15 = b nên => 15m + 15 = 15n => 15( m+1 ) = 15n => m+1 = n
Mà a.b = 4500 nên ta có :
+) 15m.15n = 4500
+) 15.15.m.n = 4500
+) 152..m.n = 4500
+) 225.m.n = 4500
=> m.n = 20
=> m = 1 và n = 20 hoặc m = 4 và n = 5
mà m+1 = n => m = 4 và n = 5
=> a = 15 . 4 = 60
b = 15 . 5 = 75
Vậy a = 60 và b = 75
Chúc bn hc tốt ! ^^
hình như thiếu đề thì pải
Tìm a,b \(\in\) N, biết:
BCNN (a,b) = 300
ƯCLN (a,b) = 15
và a + 15 = b chứ
Tìm số tự nhiên n,biết rằng
a,2 mũ 2n+3=128
b,5.2 mũ n-2 mũ n=256