Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thùy trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2021 lúc 13:18

Chọn B

demonzero
28 tháng 12 2021 lúc 14:08

b

Hoàng Diệu Cẩm Ly
Xem chi tiết
Upin & Ipin
22 tháng 2 2020 lúc 16:56

Co nha ban

Khách vãng lai đã xóa
Trần Dương Minh Lộc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:10

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

Ninh Bích Ngọc
Xem chi tiết
H T T
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 13:52

a: góc ONM+góc OPM=180 độ

=>ONMP nội tiếp

b: góc OHM=góc ONM=90 độ

=>OHNM nội tiếp

=>góc MON=góc MHN

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2019 lúc 5:09

Chọn đáp án C.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Tô Mì
Xem chi tiết
Ngô bá đạo
Xem chi tiết
Anh Văn Trung Tâm
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2023 lúc 9:37

a.

Do MA là tiếp tuyến \(\Rightarrow AM\perp OA\Rightarrow\Delta OAM\) vuông tại A

\(\Rightarrow O,A,M\) cùng thuộc đường tròn đường kính OM

Do \(OK\perp BC\Rightarrow\Delta OKM\) vuông tại K

\(\Rightarrow O,K,M\) cùng thuộc đường tròn đường kính OM

\(\Rightarrow M,A,O,K\) cùng thuộc đường tròn đường kính OM

Hay tứ giác MAOK nội tiếp đường tròn đường kính OM, với tâm là trung điểm J của OM và bán kính \(R=\dfrac{OM}{2}\)

b.

Do \(AI||BC\Rightarrow\widehat{IAK}=\widehat{AKM}\) (so le trong)

Lại có MAOK nội tiếp \(\Rightarrow\widehat{AKM}=\widehat{AOM}\) (cùng chắn cung AM)

\(\Rightarrow\widehat{IAK}=\widehat{AOM}\) (1)

Mà \(\widehat{AOM}+\widehat{AMO}=90^0\) (\(\Delta OAM\) vuông tại A theo c/m câu a)

\(\Rightarrow\widehat{IAK}+\widehat{AMO}=90^0\)

c.

Gọi E là trung điểm AI \(\Rightarrow OE\perp IA\)

Mà \(IA||BC\Rightarrow OE\perp BC\Rightarrow O,E,K\) thẳng hàng

\(\Rightarrow KE\) đồng thời là đường cao và trung tuyến trong tam giác KAI

\(\Rightarrow\Delta KAI\) cân tại K \(\Rightarrow\widehat{AIK}=\widehat{IAK}\) \(\Rightarrow\widehat{AIK}=\widehat{AOM}\) (theo (1))

Mặt khác \(\widehat{AIK}\) và \(\widehat{AOD}\) là góc nội tiếp và góc ở tâm cùng chắn cung AD của (O)

\(\Rightarrow\widehat{AIK}=\dfrac{1}{2}\widehat{AOD}\Rightarrow\widehat{AOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOD}\right)\)

\(\Rightarrow\widehat{AOM}=\widehat{MOD}\)

Xét hai tam giác AOM và DOM có:

\(\left\{{}\begin{matrix}OM\text{ chung}\\\widehat{AOM}=\widehat{MOD}\left(cmt\right)\\AO=DO=R\end{matrix}\right.\) \(\Rightarrow\Delta AOM=\Delta DOM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ODM}=\widehat{OAM}=90^0\)

\(\Rightarrow MD\) là tiếp tuyến của (O)

Nguyễn Việt Lâm
22 tháng 3 2023 lúc 9:37

loading...