. Cho các đa thức: P(x) = x 4 - 5x + 2x2 + 1; Q(x) = 5x + x 2 + 5 - 3x2 + x 4
a) Tìm M(x) = P(x) + Q(x).
b) Chứng tỏ M(x) không có nghiệm.
Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức
và cho biết bậc của đa thức, hệ số cao nhất ( các bn giúp mik vs)
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
Thu gọn:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\)
\(A\left(x\right)=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(A\left(x\right)=x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất là 1
Ta có:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x^{ }\)
\(=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(=x^3+x-10\)
Bậc của đa thức là 3, hệ số cao nhất là 1
Cho các đa thức sau:
f ( x ) = - 3 x 2 + 2 x 2 - x + 2 v à g ( x ) = 3 x 2 - 2 x 2 + 5 x - 3
Tìm nghiệm của đa thức f ( x ) + g ( x )
A. x = 5 4
B. x = 0
C. x = 1 4
D. x = - 1 4
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
Cho đa thức A(x) = -3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a) thu gọn đa thức và cho biết bậc của đa thức , hệ số cao cao nhất
b) Tìm biểu thức B(x) = A(x) . (x-1) . Sau đó tính giá trị B(x) tại x = 2
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
Bài 1 (1,5 điểm): Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức và cho biết bậc của đa thức, hệ số cao nhất
b, Tìm biểu thức B(x) = A(x). (x - 1). Sau đó tính giá trị B(x) tại x = 2 ( giúp em câu b vs ạ)
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
Cho hai đa thức f ( x ) = 2 x 2 - 5 x - 3 và g ( x ) = - 2 x 2 - 2 x + 1 . Nghiệm của đa thức f ( x ) + g ( x ) = 0 là:
A. x = 5 3
B. x = - 7 2
C. x = - 2 7
D. x = - 3 5
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
. Cho các đa thức: P(x) = x4 - 5x + 2x2 + 1; Q(x) = 5x + x2 + 5 - 3x2 + x4
a) Tìm M(x) = P(x) + Q(x).
b) Chứng tỏ M(x) không có nghiệm.
`M(x)=P(x)+Q(x)`
`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`
`=2x^4+6`
Đặt `M(x)=0`
`<=>2x^4+6=0`
`<=>x^4=-3`(vô lý vì `x^4>=0`)
Cho các đa thức: P(x) = x4 - 5x + 2x2 + 1; Q(x) = 5x + x2 + 5 - 3x2 + x4
a) Tìm M(x) = P(x) + Q(x).
b) Chứng tỏ M(x) không có nghiệm.
a) Ta có M(x)=P(x)+Q(x)
=(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))
=\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)
=(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)
=\(2x^4\)+6
Vậy M(x)=\(2x^4+6\)
b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x
nên \(2x^4+6\) \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x
Vậy M(x) vô nghiệm
Cho hai đa thức P ( x ) = 2 x 2 + 5 x - 1 , Q ( x ) = - 2 x 2 - 4 x + 3 . Nghiệm của P ( x ) + Q ( x ) là:
A. x = -1
B. x = 1
C. x = -2
D. x = 2
Ta có: P(x) + Q(x)
= 2x2 + 5x - 1 + (-2x2 -4x + 3) = x + 2
Cho x + 2 = 0 ⇒ x = -2. Chọn C
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)