Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2018 lúc 9:37

Vì ABCD là hình thang cân có AB // CD nên:

AC = BD (1)

Xét ΔADC và ΔBCD, ta có:

AC = BD (chứng minh trên)

AD = BC (ABCD cân)

CD cạnh chung

Suy ra: △ ADC =  △ BCD (c.c.c)

Suy ra :  ∠ (ACD) = ∠ ( BDC)

Hay  ∠ (OCD) =  ∠ ( ODC)

Suy ra tam giác OCD cân tại O

Suy ra: OD = OC (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: OA = OB

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà OA = OB ⇒ OM = ON

Lại có: MD = 3MO (gt) ⇒ NC = 3NO

Trong ΔOCD, ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: MN // CD (Định lí đảo của định lí Ta-lét)

Ta có: OD = OM + MD = OM + 3OM = 4OM

Trong ΔOCD, ta có: MN // CD

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: MN = 1/4 CD = 1/4 .5,6 = 1,4 (cm)

Ta có: MB = MD (gt)

Suy ra: MB = 3OM hay OB = 2OM

Lại có: AB // CD (gt) suy ra: MN // AB

Ta có: MN // AB, áp dụng hệ quả định lý Ta – let ta được:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: AB = 2MN = 2.1,4 = 2,8(cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2018 lúc 10:20

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lê Thanh Phong
Xem chi tiết
tamanh nguyen
26 tháng 8 2021 lúc 16:22

undefined

Lê Hoài Tiến
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
25 tháng 8 2021 lúc 22:43

undefined

Phạm Kim Oanh
25 tháng 8 2021 lúc 23:25

Hình vẽ minh họaundefined

Phạm Kim Oanh
25 tháng 8 2021 lúc 23:46

Hình vẽ gợi ý undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2017 lúc 5:41

Vì OM ⊥ AB và ON ⊥ CD, mà AB // CD nên suy ra M, O, N thẳng hàng.

Mặt khác, do AB // CD nên theo Định lí Ta-lét ta có:

Từ đó, theo tính chất của dãy tỉ số bằng nhau, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lâm The Computer Guy
Xem chi tiết
Pham Van Hung
25 tháng 8 2018 lúc 19:43

\(\Delta IAB\)cân tại I nên \(\widehat{IAB}=\widehat{IBA}\)( tính chất tam giác cân )

AB // CD (gt) \(\Rightarrow\hept{\begin{cases}\widehat{IAB}=\widehat{ICD}\\\widehat{IBA}=\widehat{IDC}\end{cases}\left(SLT\right)}\)

Do đó: \(\widehat{ICD}=\widehat{IDC}\Rightarrow\Delta ICD\)cân tại I \(\Rightarrow IC=ID\)( định nghĩa )

Ta có: \(IA+IC=IB+ID\Rightarrow AC=BD\)

Hình thang ABCD có AB // CD và 2 đường chéo AC, BD bằng nhau

Vậy ABCD là hình thang cân.

Chúc bạn học tốt.

Thu Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 8:50

Xét ΔQDC có AB//DC

nên QA/AD=QB/BC

mà AD=BC

nên QA=QB

QA+AD=QD

QB+BC=QC

mà QA=QB và AD=BC

nên QD=QC

Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

=>ΔABD=ΔBAC

=>góc DBA=góc BAC

=>góc PAB=góc PBA

=>PA=PB

PA+PC=AC

PB+PD=BD

mà PA=PB và AC=BD

nên PC=PD

PA=PB

QA=QB

=>PQ là trung trực của AB

PD=PC

QD=QC

=>PQ là trung trực của DC

•¢ɦẹρ➻¢ɦẹρ
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 13:22

a: Xét ΔACD và ΔBDC có

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB