Cho \(\Delta ABC\)vuông tại A, có đường cao AH. Từ H vẽ HD vuông góc với AB; HE vuông góc với AC. Lấy O là trung điểm của BC. Gọi I, K lần lượt là trung điểm BH, HC.
a) Chứng minh AH=DE và AO vuông góc với DE.
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^
Sao bổ sung hình vẽ không được vậy nè
Cho tam giác ABC vuông tại A, có đường cao AH.
a) Biết AH=4cm, CH=2cm, Tính AB, AC.
b) Từ H vẽ HD vuông góc với AB tại D, HE vuông góc với AC tại E.
CM: AD.AB-AE.AC
c) CM: DE\(^3\)-BD.CE.BC
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2)suy ra \(AD\cdot AB=AE\cdot AC\)
Cho tam giác ABC vuông tại A , đường cao AH , AK là đường trung tuyến của tam giác ABC . Gọi HD là đường góc vuông , vẽ từ H đến AB,HE là đường góc vuông vẽ từ H đến ADC .
CMR : AK vuông góc BE
Lời giải:
Gọi $T$ là giao điểm $AK, DE$.
Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật.
$\widehat{ADT}=\widehat{ADE}=\widehat{AHE}=90^0-\widehat{EHC}=\widehat{C}(1)$
Mặt khác:
Tam giác $ABC$ vuông tại $A$, $AK$ là đường trung tuyến ứng với cạnh huyền nên $AK=\frac{BC}{2}=BK$
$\Rightarrow ABK$ là tam giác cân tại $K$
$\Rightarrow \widehat{TAD}=\widehat{KAB}=\widehat{KBA}=\widehat{B}(2)$
Từ $(1); (2)\Rightarrow \widehat{ADT}+\widehat{TAD}=\widehat{B}+\widehat{C}=90^0$
$\Rightarrow \widehat{DTA}=180^0-(\widehat{ADT}+\widehat{TAD})=180^0-90^0=90^0$
$\Rightarrow DE\perp AK$ (đpcm)
Cho tam giác ABC vuông tại A , có đường cao AH và đường trung tuyến AM . Từ H vẽ HD vuông góc với AB tại D , vẽ HE vuông góc với AC tại E
a) CM: AH^2 = AD.AB
b) CM: AD.AB=HB.HC
c) Cho AB=12cm;AC=40cm . Tính BC,AM,AH?
d) CM: AM vuông góc với DE
cho tam giác ABC vuông tại A có AB =15cm, AC = 20cm.Từ A vẽ đường cao AH a) Tính BC,AH,CH,BH b) Từ H kẻ HD vuông góc với AC.Chứng minh tam giác ABC dấu đồng dạng tam giác DHC c) Tính Sdhc =?
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12cm
BH=15^2/25=9cm
CH=25-9=16cm
b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDHC
c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)
=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông góc với cạnh AB tại D, vẽ hE vuông góc với cạnh AC tại E. Biết AB = 15cm, BC = 25cm.
1)Tính độ dài cạnh AC và diện tích tam giác ABC.
2)Chứng minh tứ giác ADHE là hình chữ nhật.
3)Trên tia đối của AC lấy điểm F sao cho AF = AE. Chứng minh tứ giác AFDH là hình bình hành.
4)Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM vuông góc HK.
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Trên BC vẽ điểm D sao cho HB=HD. Từ D vẽ đường thẳng vuông góc với AC cắt AC tại E.
a) Chứng minh AH=HE.
b) Từ E vẽ đường thẳng vuông góc với HE cắt BC tại I. Chứng minh ID=IC.
cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
cho tam giác ABC vuông tại A. Đường cao AH. Từ H vẽ HD vuông góc với AB tại D, vẽ HE vuông góc với AC tại E. Trên tia đối tia AC lấy điểm F sao cho AF = AE. K là điểm đối xứng của B qua A. Gọi M là trung điểm của AH. Chứng minh CM vuông góc với HK