Bài 10: Cho tam giác ABC, trung tuyến AD có G là trọng tâm. Vẽ đường thẳng d qua G cắt cạnh AB; AC lần lượt tại E; F. Chứng minh:
a) \(\frac{AB}{AE}+\frac{AC}{AF}=3\)
b) \(\frac{BE}{AE}+\frac{CE}{AF}=1\)
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC, G là trọng tâm của tam giác, AM là đường trung tuyến. Đường thẳng qua d qua G cắt các cạnh AB và AC. Vẽ AA', BB', CC' vuông góc với đường thẳng d (A', B', C' thuộc d).Chứng minh AA'= BB'+CC'
Cho tam giác ABC có G là trọng tâm. Qua G vẽ đường thẳng d cắt hai cạnh AB và AC tại D và E. Chứng minh: AB/AD=AC/AE=3
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC có AM là đường trung tuyến, G là trọng tâm. Qua G vẽ đường thẳng song song với AB cắt BC ở D, qua G vẽ đường thẳng song song với AC cắt BC ở E. Chứng minh rằng: A:BD/BM=2/3 B:BD=DE=EC
cho tam giác abc cân tại a(góc a<90) vẽ tia phân giác ad của góc a(d thuộc bc) chứng minh tam giác abd= tam giác acd vẽ dường trung tuyến cf của tam giác abc cắt ad tại g chứng minh g là trọng tâm của tam giác abc gọi h là trung điểm của cạnh dc qua h vẽ đường thẳng vuông góc với cạnh dc cắt cạnh ac tại e chứng minh tam giác dec cân chứng minh ba điểm b,g,e thẳng hàng
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cả hình nữa nhé, làm nhanh giúp mình với mai nộp rồi:<<
a: XétΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
DO đó: ΔABD=ΔACD
b: XétΔABC có
AD là đường trung tuyến
CF là đường trung tuyến
AD cắt CF tại G
Do đó: G là trọng tâm của ΔABC
Bài 2: Cho tam giác ABC , đường trung tuyến AM, trọng tâm G . Vẽ đường thẳng d đi qua G, cắt các cạnh AB, AC . Gọi A’, B’, C’, M’ lần lượt là hình chiếu của các điểm A, B, C, M trên đường thẳng d. Chứng minh a/ BB’+CC’=2MM’ b/ AA’=BB’+CC’.