Cho hình thang vuông ABCD\(\left(\widehat{A}=\widehat{D}=90^o\right)\) EF là trung điểm AD,BC; EF=AD.F kẻ đường thẳng vuông góc BC cắt AD tại K biết BC=10cm Tính FK
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90^o\right)\) có \(\widehat{BMC}=90^o\) . Với M là trung điểm của AD. C/m:
a. AD là tiếp tuyến của đường tròn đường kính BC
b. BC là tiếp tuyến của đường tròn đường kính AD
a . Gọi O là tâm của đường tròn có đường kính BC.
Xét \(\Delta\)BMC vuông tại M có O là trung điểm của BC (OB=OC)
\(\Rightarrow CB=MO=OC\)
\(\Leftrightarrow M\in\left(O;OB\right)\left(1\right)\)
Xét hình thang ABCD có :
M là trung điểm của AD;O là trung điểm của BC
\(\Rightarrow MO\) là đường trung bình
\(\Leftrightarrow\)AB//MO
Mà AD\(\perp\)AB
\(\Rightarrow MO\perp AD\left(2\right)\)
Từ \(\left(1\right)\left(2\right)suyra\) AD là tiếp tuyến của đường tròn đường kính BC
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90\right)\)có \(\widehat{BMC}=90\)với M là trung điểm của AD. Chứng minh rằng:
a) AD là tiếp tuyến của đường tròn có đường kính BC.
b) BC là tiếp tuyến của đường tròn có đường kính AD.
Cho hình thang vuông ABCD \(\left(\widehat{A}+\widehat{D}=90^o\right)\). Gọi M là một điểm trên canh AD sao cho chu vi tam giác MBC nhỏ nhất. Chứng Minh \(\widehat{AMB}=\widehat{DMC}\)
Cho hình thang ABCD(AD//BC). Biết \(\widehat{A}+\widehat{D}=90^o\); F là trung điểm của AD, E là trung điểm của BC. EK//CD;EI//AB(i;k thuộc AD).
a, CM: \(\widehat{IEK}\)=90o
b, CM: EF=\(\dfrac{AD-BC}{2}\)
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90^o\right)\)có AC = AD và BC cắt AD tại E.
CMR : \(\frac{1}{BC^2}+\frac{1}{CE^2}=\frac{1}{AD^2}\)
( Vẽ cái hình chuẩn tí nha )
Cho hình thang vuông ABCD, \(\widehat{A}=\widehat{D}=90^o\)có I là trung điểm AD và CI là tia phân giác của góc C. Gọi H là chân đường vuông góc kẻ từ I đến BC. Chứng minh rằng :
a ) \(\widehat{AHD}=90^o\)
b ) \(\widehat{BIC}=90^o\)
c ) \(AB+CD=BC\)
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
Cho hình thang vuông ABCD\(\left(\widehat{A}=\widehat{D}=90^o\right)\), có DC = 2AB. Kẻ DH vuông góc với AC \(\left(H\in AC\right)\), gọi N là trung điểm của CH. C/m \(BN\perp DN\)
Cho tứ giác ABCD có \(\hat{A}\)= 100o, \(\widehat{B}\)= 100o, \(\widehat{D}\)= 80o. Lấy E,F lần lượt là trung điểm của AD, BC. O là giao điểm của AC và BD.
a) CMR: ABCD là hình thang cân và tính góc C.
b) Cho AB = 20 cm, CD = 30cm. Tính EF, EO, FO.
c) CMR: \(\Delta\)ABC = \(\Delta\)ABD, \(\Delta\)ACD = \(\Delta\)BDC, \(\Delta\)AEO = \(\Delta\)BFO.
d) Giả sử AD = 20cm. Tính BC, góc ABD, góc ADB, góc AOD, góc AOB.
Trong hình thang vuông ABCD với các đáy là AD, BC có \(\widehat{A}=\widehat{B}=90^0;\widehat{ACD}=90^0;BC=4cm;AD=16cm\). Hãy tìm các góc C và D của hình thang ?