Cho △DEF có DE = 6cm; DF = 8cm; EF= 10cm.
a. Chứng tỏ tam giác EDF vuông tại D.
b. Vẽ phân giác EI ( I ϵ DF ), từ I vẽ IH ⊥ EF ( H ϵ EF ). Chứng minh ID = IH
c. Gọi K là trung điểm của cạnh EF, đường thẳng KA cắt cạnh DF tại M. Tính MF
Cho tam giác DEF có DE=cm,DF=6cm,EF=10cm.Tam giác DEF là tam giác gì? Vì sao?
Cho tam giác DEF nội tiếp(0:5 cm) có EF đi qua O và DE= 6cm .Tính DF?
Do EF đi qua O nên EF là đường kính của (O)
⇒ EF = 5.2 = 10 (cm)
Do ∆DEF nội tiếp (O) và EF là đường kính
⇒ ∆DEF vuông tại D
⇒ EF² = DE² + DF² (Pytago)
⇒ DF² = EF² - DE²
= 10² - 6²
= 64
⇒ DF = 8 (cm)
Cho tam giác ABC và tam giác DEF có AB=DE; B ^ = E ^ , A ^ = D ^ . Biết AC=6cm. Độ dài DF là:
A. 4cm
B. 5cm
C. 6cm
D. 7cm
Cho Tam Giác ABC (A^=90 độ) và tam giác DEF (D^=90 độ) Hỏi ABC (Có Đồng dạng và Tam Giác DEF Không? Vì Sao? ) a: Nếu B^ = 40 độ F^ = 50 Độ b: AB=6cm ; BC=9cm ; DE=4cm; EF=6cm
Cho tam giác DEF = tam giác HIK có : DE = 2cm, góc E = 40 độ, EF = 5cm, HK = 6cm.
a) Tính số đo góc I
b) Tính chu vi của tam giác DEF và HIK
Ta có: tam giác DEF = tam giác HIK
=> DE = HI ; EF = IK ; DF = HK
=> góc D = góc H
góc E = góc I
góc F = góc K
a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)
Mà góc E = 400 => góc I = 400
b/ Chu vi tam giác DEF= chu vi tam giác HIK
= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)
Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm
Cho tam giác DEF có DE=6cm,DF=8cm,EF=12cm.gọi A, B,C lần lượt là trung điểm của DE,DF và EF.Tính độ dài các cạnh AB,AC và BC
nhớ cho mik nha =)
Cho ∆ABC = ∆DEF, biết AB + DE = 10cm; EF = 6cm, AC = 7cm. Tính chu vi ∆ABC
Ta có:
ΔABC=ΔDEF\(\Rightarrow\left\{{}\begin{matrix}AB=DE\\BC=EF\\AC=DF\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AB+DE=10\left(cm\right)\\EF=6\left(cm\right)\\AC=7\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{10}{2}=5\left(cm\right)\\BC=6\left(cm\right)\\AC=7\left(cm\right)\end{matrix}\right.\)
Chu vi ΔABC là:
\(C_{ABC}=AB+BC+AC=5+6+7=18\left(cm\right)\)
cho tam giác DEF có DK là tia phân giác của góc D, DF=9cm, DE=27cm. tính tỉ số KE/KF. tính KE biết KF=6cm
Xét ΔDEF có DK là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{KE}{KF}=\dfrac{DE}{DF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{KE}{KF}=\dfrac{27}{9}=3\)
Ta có: \(\dfrac{KE}{KF}=3\)(cmt)
\(\Leftrightarrow KE=3\cdot KF=3\cdot6=18\left(cm\right)\)
Vậy: KE=18cm
+, ta có tam giác DK là tia pg của góc EDF
=> EK/KF= DE/DF
=> EK/FK= 27/9= 3
+, có EK/DE=KF/DF=> KE= 18cm
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho Tam giác DEF biết EF bằng 7,5cm DF bằng 4,5cm DE bằng 6cm a) Tính đường cao DK của tam giác DEF b) Tính EK và FK
Xét ta có:
\(EF^2=7,5^2=56,25\left(cm\right)\) (1)
Mà: \(DF^2+DE^2=4,5^2+6^2=56,25\left(cm\right)\) (2)
Từ (1) và (2) ta có:
\(EF^2=DE^2+DF^2\)
\(\Rightarrow\Delta DEF\) vuông tại D có đường cao DK
a) Áp dụng hệ thức hai cạnh góc vuông và đường cao ta có:
\(\dfrac{1}{DK^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(\Rightarrow DK^2=\dfrac{DE^2DF^2}{DF^2+DF^2}\Rightarrow DK=\sqrt{\dfrac{DE^2DF^2}{DF^2+DE^2}}\)
\(\Rightarrow DK=\sqrt{\dfrac{4,5^2\cdot6^2}{4,5^2+6^2}}=3,6\left(cm\right)\)
b) Áp dụng hệ thức hình chiếu và cạnh góc vuông ta có:
\(\left\{{}\begin{matrix}DE^2=EF\cdot EK\\DF=EF\cdot FK\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}EK=\dfrac{DE^2}{EF}\\FK=\dfrac{DF^2}{EF}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}EK=\dfrac{6^2}{7,5}=4,8\left(cm\right)\\FK=\dfrac{4,5^2}{7,5}=2,7\left(cm\right)\end{matrix}\right.\)
a: Xét ΔDEF có EF^2=DE^2+DF^2
nên ΔDEF vuông tại D
Xét ΔDEF vuông tại D có DK là đường cao
nên DK*FE=DE*DF
=>DE*7,5=27
=>DE=3,6cm
b: ΔDEF vuông tại D có DK là đường cao
nên EK*EF=ED^2
=>EK=6^2/7,5=4,8cm
FK=7,5-4,8=2,7cm