Chứng minh: ababab chia hết cho 13
abcabc chia hết cho 11; Cho A =2 mủ 0 + 2 mủ 1 + 2 mủ 2 + 2 mủ 3 + 2 mủ 4 +......+2 mủ 2019
chứng minh rằng với ab thuộc N thì:
1,abab chia hết cho 11
2,aaabbb chia hết cho 37
3,abcabc chia hết cho 7,11,13
4,ababab chia hết cho10101
5,abab-baba chia hết cho 9
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
Chứng minh rằng abcabc + ababab chia hết cho 7
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab)= 201110a+22111b+1001c
=> (abcabc+ababab) = 91.(2210a+221b+11c) = 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
Chứng minh (abcabc+ ababab) chia hết cho 7
Phân tích ra khác được 1 số chia hết cho7
abcabc+abacab
(=) ax100000+bx10000+cx1000+ax100+b x 10+c+ax100000+bx10000+ax1000+b x 100+ax10+b
(=) ax(100000+100+100000+1000+10) + bx(10000+10+10000+100+1)+ cx(1000+1)
(=)ax201110+bx20111+cx1001
vì 201110 chia hết cho 7 => ax20110 chia hết 7
vì 20111 chia hết cho 7 => bx20111 chia hết cho 7
vi 1001 chia hết cho 7 => cx1001 chia hết cho 7
=> a x 201110+bx20111+cx1001 chia hết cho 7
=>abcabc+ababab chia hết cho 7
Chứng Minh:
1) aaaa chia hết cho 11 và 101
2) abcabc chia hết cho 7 ; 11 ; 13 ; 143
1) aaaa = a . 1111 = a . 11 . 101
=> aaaa chia hết cho 11 và 101
2 ) abcabc = abc . 1001 = abc .7 . 143 chia hết cho 7
= abc . 1001 = abc .11. 99 chia hết cho 11
= abc . 1001 = abc . 13 . 77 chia hết cho 13
= abc .1001 = abc . 143 . 7 chia hết cho 143
aaaa
= a x 1111
Mà 1111 = 11 x 101
Vậy aaaa chia hết cho 11 và 101
abcabc
= abc000 + abc
= abc x 1000 + abc
= abc x 1001
Mà 1001 = 7 x 143 = 7 x 11 x 13
Vậy abcabc chia hết cho 7 ; 11 ; 13 ; 143
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
1, Chứng minh abcabc chia hết cho 7 ; 11 và 13
2,Cho abc= 3 nhân deg . Chứng tỏ abcdeg chia hết cho 23
1) ta co abcabc=abc.1000+abc
= abc.1001 chia hết cho
vi 1001 chia het cho 7;11;13
=> abc.1001 chia het cho 7;11;13
=> abcabc chia het cho 7;11;13
2) trong câu hỏi tương tự nhé
Chứng tỏ ( abcabc + ababab ) chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab = 100000a+10000b+1000a+100b+10a+b
-->(abcabc +ababab ) =201110a+20111b+1001c
=91(2210a+221b+11c)
= 7.13 (2210a+221b+11c) chia hết cho 7
Giải:
Ta có:
abcabc = 100000.a + b.10000 + c.1000 + a.100 + b.10 +c
ababab = 100000.a + b.10000 + a.1000 + b.100 + a.10 + b
\(\Rightarrow\) abcabc + ababab = 201110.a + 20111.b + 1001.c = 91.( 2210.a + 221.b + 11.c ) chia hết cho 7 ( vì 91 = 13.7 chia hết cho 7 )
\(\Rightarrowđpcm\)
1. Chứng minh rằng nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
2. a, Chứng minh rằng số có dạng abcabc chia hết cho 7,11,13
b, Áp dụng câu a ko thực hiện phép chia hãy cho biết trong các số sau số nào chia hết cho 7, số nào chia hết cho 11, số nào chia hết cho 13 .272283,236243,579572
3. Chứng minh rằng nếu ab=cd*3 thì abcd chia hết cho 43
4. Cho abc+deg chia hết cho 37 . Chứng minh abcdeg chia hết cho 37
giải ra giùm mình nhé
ai trả lời được mình k cho
Chứng minh rằng số có dạng abcabc chia hết cho 17; 11 và 13.
abcabc=abc.1000+abc=abc.(1000+1)=abc.1001=abc.11.13.7
Vậy abcabc chia hết cho 7;11;13
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13