Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bích Phương
Xem chi tiết
Rhider
25 tháng 11 2021 lúc 8:54

Nối B với D
Xét ΔABD có :
AM = BM (gt)
AQ = DQ (gt)
=> QM là đường tb của ΔABD
=> QM // BD , QM = 1/2 BD(1)
Chứng minh tương tự ΔBCD
=> NP là đường tb của ΔBCD
=> NP // BD , NP = 1/2 BD (2)
Từ (1) và (2 ) => Tứ giác MNPQ là hình bình hành (dhnb)(đcpcm)
 

Bích Phương
Xem chi tiết
Bảo Châu Trần
Xem chi tiết
Đinh Anh Đức
Xem chi tiết
sadboy
Xem chi tiết
Bảo Ngọc Hà
Xem chi tiết
dam quang tuan anh
8 tháng 11 2017 lúc 21:51

http://lazi.vn/edu/exercise/cho-tu-giac-abcd-goi-m-n-p-q-lan-luot-la-trung-diem-cua-cac-canh-ab-cd-ad-bc-chung-minh-vecto-mp-qn-mq-pn . Bạn vào link này nhé

Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 10:51

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có 

Q là trung điểm của AD(gt)

P là trung điểm của CD(gt)

Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có 

MN//PQ(cmt)

MN=PQ(cmt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b)

Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)

Hình bình hành MNPQ trở thành hình vuông khi 

ami02
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 23:01

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)

Xét ΔBCD có

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Vương Cấp
29 tháng 10 2021 lúc 23:29

b) ✱Xét Δ ABD có :
 AM = BM  ( gt )
AQ = DQ ( gt ) 
⇒ QM là đg trung bình của Δ ABD 
⇒ MQ = 1/2 BD
✱Xét Δ BDC có :
BN = CN ( gt )
DP = PC ( gt )
⇒ NP là đg trung bình Δ BDC 
⇒ NP = 1/2 BD
Ta có :
 Chu vi tg MNPQ là:
MN + NP + PQ + QM ⇔ 1/2 AC + 1/2 BD + 1/2 AC + 1/2 BD 
⇔ MN + NP + PQ + QM = AC + BD
Mà AC và BD là đg chéo của tg ABCD 
⇒ Chu vi tg MNPQ = tổng 2 đg chéo tg ABCD 
Đó , m ghi vô ii ko mai thầy chửi sấp mặt đấy !

Bích Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
25 tháng 11 2021 lúc 10:01

a/

Xét \(\Delta ABC\) có

MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)

Xét \(\Delta ADC\) có

QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\)  (3) Và PQ // AC (4)

Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)

Ta có MN // AC (2)

Xét tg ABD có 

MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)

Gọi O là giao của MP và NQ. Từ  (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)

\(\Rightarrow AC\perp BD\) 

Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau

c/

Nếu MNPQ là hình thoi => QM=MN (1)

Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)

Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)

Từ (1) (2) và (3) => AC=BD

Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau

Khách vãng lai đã xóa
giang nguyen thu
Xem chi tiết
Lê Đình An
23 tháng 10 2016 lúc 9:42

a) Xét tam giác ABC có

M là trung điểm của AB

N là trung điểm của BC

=>MN là đường tb của yam giác ABC

=>MN//AC và MN=1/2 BC (1)

cm tg tự => QP//AC và QP =1/2 AC (2)

Từ (1) và (2) => MNPQ là hbh

bùi quốc việt88
16 tháng 12 2016 lúc 11:08

cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB.BC,CD,DA

tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông