Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2BM/AN =BN/CN và góc BNM = góc ANC . Gọi P là trung điểm AM,Q là giao điểm AN và CP.Chứng minh:
a,MN // CP
b, Tam giác AQC cân tại Q
c, Tam giác ABC vuông tại C
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB,AC.
a) Chứng minh tứ giác BMNC là hình thang. Tính SBMNC biết SABC= 80cm2, BC=20cm2.
b) Gọi I là trung điểm của AM; K là điểm đối xứng của M qua I. Chứng minh BMKN là hình bình hành.
c) Gọi G là giao điểm của BN và CM. Chứng minh AG, KN và BC đồng quy.
Cho ΔABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I.
a) CMR: AD song2 BM và tứ giác ADBM là hình tho.
b) Gọi E là giao điểm của AM và AD. C/m: AE = EM.
c) Cho BC = 5cm và AC = 4cm. Tính S Δ ABM.
Cho hình vuông ABCD, điểm E đối xứng với A qua D. Kẻ AH vuông góc với BE (H thuộc BE ) . Gọi I, K lần lượt là trung điểm của AH và EH .Chứng minh rằng:
a) Tam giác ACE là tam giác vuông cân.
b) Tứ giác BCKI là hình bình hành.
Giúp mình vs mọi người ơi mình cần gấp lắm THANKS TRƯỚC NHA!
cho hình vuông ABCD, điểm E đối xứng với A qua D. Kẻ AH vuông góc với BE (H thuộc BE). Xác định I, K lần lượt là trung điểm của AH và EH. chứng minh tứ giác BCKI là hình bình hành.
ai gúp mình với ạ !!!
Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy D đối xứng với B qua O.
a) Chứng minh tứ giác ABMD là hình bình hành.
b) Chứng minh tứ giác AMCD là hình thoi.
c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang.
d) Chứng minh \(\widehat{NHK}\) = 90o