Ôn tập chương II - Đa giác. Diện tích đa giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Cẩm Tú

Cho ΔABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I.

a) CMR: AD song2 BM và tứ giác ADBM là hình tho.

b) Gọi E là giao điểm của AM và AD. C/m: AE = EM.

c) Cho BC = 5cm và AC = 4cm. Tính S Δ ABM.

Nguyễn Lê Phước Thịnh
11 tháng 1 2021 lúc 20:05

a) Xét tứ giác ADMB có 

I là trung điểm của đường chéo AB(gt)

I là trung điểm của đường chéo MD(M và D đối xứng nhau qua I)

Do đó: ADMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒AD//BM(Hai cạnh đối trong hình bình hành ADMB)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM=CM

Hình bình hành ADBM có AM=BM(cmt)

nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Sửa đề: E là giao điểm của AM và CD

Xét ΔABC có 

M là trung điểm của BC(gt)

I là trung điểm của AB(gt)

Do đó: MI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MI//AC và \(MI=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà D∈MI và \(MI=\dfrac{MD}{2}\)(I là trung điểm của MD)

nên MD//AC và MD=AC

Xét tứ giác ACMD có 

MD//AC(cmt)

MD=AC(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AM và CD cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AM cắt CD tại E(gt)

nên E là trung điểm của AM

hay AE=EM(Đpcm)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=5^2-4^2=9\)

hay AB=3(cm)

Ta có: \(MI=\dfrac{AC}{2}\)(cmt)

mà AC=4(cm)

nên \(MI=\dfrac{4}{2}=2\left(cm\right)\)

Xét ΔAMB có MI là đường cao ứng với cạnh AB(gt)

nên \(S_{ABM}=\dfrac{MI\cdot AB}{2}=\dfrac{2\cdot3}{2}=3\left(cm^2\right)\)


Các câu hỏi tương tự
Đinh Cẩm Tú
Xem chi tiết
khánh Duy 7.3
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Quân
Xem chi tiết
Cam 12345
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Hoàng Kiên
Xem chi tiết
Ngọc
Xem chi tiết
Tuan Thong Ngo
Xem chi tiết