Cho tam giác ABC cân taijA, gọi M và N lần lượt là trung điểm của AB và AC; BN cắt CM tại I
CM: Tam giác AMN cânCM: BN=CMCM: AI là tia phân giác của góc BACCM: AI vuông BC và AI vuông MNCho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG.
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG(Chỉ cần câu c)
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
cho tam giác ABC nhọn(AB<AC) gọi M,N và K lần lượt là trung điểm của AB,AC,BC.đường cao AH
chứng minh tứ giác MNKH là hình thang cân
\(\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb }\Delta ABC\\ \Rightarrow MN\text{//}BC\Rightarrow MN\text{//}HK\\ \Rightarrow MNKH\text{ là hthang}\)
\(\left\{{}\begin{matrix}AM=MB\\BK=KC\end{matrix}\right.\Rightarrow MK\text{ là đtb }\Delta ABC\\ \Rightarrow MK=\dfrac{1}{2}AC\)
Mà HN là trung tuyến ứng cạnh huyền AC nên \(HN=\dfrac{1}{2}AC\)
\(\Rightarrow MK=HN\\ \text{Vậy }MNKH\text{ là htc}\)
Cho tam giác ABC vuông cân tại A , có AB = AC = 2. Gọi M,N lần lượt là trung điểm của AB và AC . Tính tích vô hướng của BM và CN.
Xét \(\Delta ABC\)có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN // BC , MN = \(\frac{BC}{2}\)
Xét \(\Delta AHC\)có :
HN là trung tuyến
=> HN = AN = NC = \(\frac{AC}{2}\)
Xét \(\Delta ABC\)có :
M là trung điểm AB
K là trung điểm BC
=> MK là đường trung bình
=> MK // AC , MK = \(\frac{AC}{2}\)
=> MK = NH
Xét tứ giác MNKH có :
MN//HK
MK = NH
=> MNKH là hình thang cân
b) Xét \(\Delta AED\)có :
H là trung điểm AE
K là trung điểm AD
=> HK là đường trung bình
=> HK // ED
Xét \(\Delta ACE\)có :
HC là trung trực
=> \(\Delta ACE\)cân tại C
=> AC = CE
Xét tứ giác ACDB có :
K là trung điểm BC
K là trung điểm AD
=> ACDB là hình hình hành
=> AC = BD
Mà CE = AC (cmt)
=> BD =CE
Mà BC // ED
=> BCDE là hình thang cân
Cho tam giác ABC , định trên cạnh AB và AC các điểm D và E sao cho BD = CE . Gọi M là trung điểm của DE , N là trung điểm của BC . I và F lần lượt là giao điểm của MN với AC và AB . Chứng minh tam giác AIF cân
1) Cho tam giác ABC có AB<AC, AH là đường cao. Goi M, N, K lần lượt là trung điểm AB, AC, BC
a)Chứng minh MNKH là hình thang cân
b)Tia AH và tia AK lần lượt lấy điểm E và D sao cho H là trung điểm AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân
2) Cho tam giác ABC có Â>90 độ. Bên ngoài tam giác ABC, vẽ tam giác ABD và tam giác ACE vuông cân tại A
a) Chứng minh CD=BE
b) Gọi M,N,P lần lượt là trung điểm của BD, CE, BC. Chứng minh tam giác MNPlà tam giác vuông cân
Bài 1 :
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho góc ABN = góc ACM = 15 độ. Gọi I là giao điểm của MC và NB. Gọi H,E,D lần lượt là trung điểm của BC,BN,CM.
a) So sánh tam giác ABN và tam giác ACM.
b) C/m tam giác ADE đều.
c) C/m 3 điểm A,I,H thẳng hàng.
d) Tính góc DHE
Cho tham giác ABC cân tại A. Gọi M và N lần lượt là trung điểm của AC và AB. gọi G là giao điểm của BM và CN.
a) Tam giác ABC cân
b) BM = CN
c) Tam giác GBC cân