tìm GTNN của bt;
B=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\) và a+b+c+d=1; a,b,c,d là số dương
Với gt nào của bt C=/x-100/+/y+200/-1 có gtnn, tìm gtnn đó
a,tìm GTNN của bt
A=x^2+10x-37
b,tìm GTLN của bt
B=6x-x^2+3
Tìm GTLN,GTNN của bt:
A=4x+3 / x2 +1
\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=-2\)
\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)
Tìm GTLN,GTNN của bt:
A=3-4x / x2 +1
\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)
\(A_{min}=-1\) khi \(x=2\)
\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)
Tìm GTLN, GTNN của bt: P = 3 căn(x) + 1
GTNN:
Vì \(\sqrt{x}\ge0\Rightarrow3\sqrt{x}\ge0\Rightarrow P=3\sqrt{x}+1\ge1\)
Dấu bằng xảy ra <=> x=0
Tìm gtnn của bt Q= \(\frac{x+25}{sqrt{√x}}\)
\(Q=\sqrt{x}+\dfrac{25}{\sqrt{x}}>=2\cdot\sqrt{\sqrt{x}\cdot\dfrac{25}{\sqrt{x}}}=10\)
Dấu = xảy ra khi x=25
Tìm GTNN của bt: A=|x-2013|+|x-1|
Ta có: \(A=\left|x-2013\right|+\left|x-1\right|=\left|2013-x\right|+\left|x-1\right|\ge\left|2013-x+x-1\right|=2012\)
Dấu "=" xảy ra khi \(\left(2013-x\right)\left(x-1\right)\ge0\Leftrightarrow1\le x\le2013\)
Vậy GTNN của A = 2012 khi 1 =< x =< 2013
Tìm GTNN của bt: A= -10/√x + 5
Giúp mình với ạ
`A=-10/(sqrtx+5)(x>=0)`
`x>=0=>sqrtx>=0`
`=>sqrtx+5>=5>0`
`=>10/(sqrtx+5)<=10/5=2`
`=>A>=-2`
Dấu "=" xảy ra khi `x=0`
Vậy GTNN `A=-2<=>x=0`
Tìm GTNN của bt:
S= x2 -2x+2018 / x2 với x>0
\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)
\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)
Tìm gtnn của bt:
2x^2+4x+15
\(2x^2+4x+15=2.\left(x^2+2x+1\right)+13=2.\left(x+1\right)^2+13\ge13,\forall x\inℝ\\ \)
Dấu "=" xảy ra <=> x=-1
Vậy \(Min\left(A\right)=13\Leftrightarrow x=-1\)
2x2+4x+15
=2(x2+2x+1)+13
=2(x+1)2+13
Có 2(x+1)2\(\ge\)0 \(\forall x\in R\)
=>2(x+1)2+13\(\ge13\forall x\in R\)
Vậy GTNN của phương trình trên là 13
\(2x^2+4x+15=2\left(x^2+2x+\frac{15}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{13}{2}\right)\)
\(=2\left(x+1\right)^2+13\)
Vì:\(2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+1\right)^2+13\ge13\forall x\)
Dấu = xảy ra khi \(2\left(x+1\right)^2=0\Rightarrow x=-1\)
vậy gtnn của bt là 13 tại x=-1