Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Đức
Xem chi tiết
Diệu Anh
Xem chi tiết
Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:30

\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=-2\)

\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:46

\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=2\)

\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)

Nguyễn Tường Vy
Xem chi tiết
Võ Việt Hoàng
29 tháng 7 2023 lúc 7:19

GTNN:

Vì \(\sqrt{x}\ge0\Rightarrow3\sqrt{x}\ge0\Rightarrow P=3\sqrt{x}+1\ge1\)

Dấu bằng xảy ra <=> x=0

 

 

 

Trang Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2023 lúc 23:30

\(Q=\sqrt{x}+\dfrac{25}{\sqrt{x}}>=2\cdot\sqrt{\sqrt{x}\cdot\dfrac{25}{\sqrt{x}}}=10\)

Dấu = xảy ra khi x=25

anhemcaubut
Xem chi tiết
ST
11 tháng 1 2018 lúc 20:21

Ta có: \(A=\left|x-2013\right|+\left|x-1\right|=\left|2013-x\right|+\left|x-1\right|\ge\left|2013-x+x-1\right|=2012\)

Dấu "=" xảy ra khi \(\left(2013-x\right)\left(x-1\right)\ge0\Leftrightarrow1\le x\le2013\)

Vậy GTNN của A = 2012 khi 1 =< x =< 2013

Nguyễn Phương Thảo
Xem chi tiết
Yeutoanhoc
22 tháng 8 2021 lúc 21:38

`A=-10/(sqrtx+5)(x>=0)`

`x>=0=>sqrtx>=0`

`=>sqrtx+5>=5>0`

`=>10/(sqrtx+5)<=10/5=2`

`=>A>=-2`

Dấu "=" xảy ra khi `x=0`

Vậy GTNN `A=-2<=>x=0`

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:59

\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)

\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)

khánh huyền
Xem chi tiết
Đàm Thị Minh Hương
11 tháng 7 2018 lúc 9:09

\(2x^2+4x+15=2.\left(x^2+2x+1\right)+13=2.\left(x+1\right)^2+13\ge13,\forall x\inℝ\\ \)

Dấu "=" xảy ra <=> x=-1

Vậy \(Min\left(A\right)=13\Leftrightarrow x=-1\)

Hiếu Thông Minh
11 tháng 7 2018 lúc 9:10

2x2+4x+15

=2(x2+2x+1)+13

=2(x+1)2+13

Có 2(x+1)2\(\ge\)\(\forall x\in R\)

=>2(x+1)2+13\(\ge13\forall x\in R\)

Vậy GTNN của phương trình trên là 13

Lê Ng Hải Anh
11 tháng 7 2018 lúc 9:10

\(2x^2+4x+15=2\left(x^2+2x+\frac{15}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{13}{2}\right)\)

\(=2\left(x+1\right)^2+13\)

Vì:\(2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+1\right)^2+13\ge13\forall x\)

Dấu = xảy ra khi \(2\left(x+1\right)^2=0\Rightarrow x=-1\)

vậy gtnn của bt là 13 tại x=-1