Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn Quỳnh Trang
16 tháng 12 2019 lúc 20:46

a) Xét tứ giác BDCN có :M là trung điểm BC

                                       M là trung điểm DN

\(\Rightarrow\)Giao điểm của hai đường chéo BC và DN là trung điểm M mỗi đường

\(\Rightarrow\)BDCN là hình bình hàng

b)Vì BDCN là hình bình hành

\(\Rightarrow\)BD//CN và BD=CN

mà N là trung điểm AC ( gt )

\(\Rightarrow\)BD // AN và BD =AN

\(\Rightarrow\)ABDN là hình bình hành

Có \(\widehat{A}\)=90 độ ( Vì tam giác ABC \(\perp\)tại A )

\(\Rightarrow\)ABDN là hình chữ nhật

\(\Rightarrow\)AD =BN ( tính chất hình chữ nhật)

Khách vãng lai đã xóa
阮草~๖ۣۜDαɾƙ
16 tháng 12 2019 lúc 20:48

a. Ta có: D đối xứng với N qua M (gt)

      => NM = MD 

      => M là trung điểm của ND

  Xét tứ giác BDCN, ta có:

      M là trung điểm của ND (cmt)

      M là trung điểm của BC (gt)

      => BDCN là hình bình hành (dhnb)

    

Khách vãng lai đã xóa
Nguyễn Thùy Trang
16 tháng 12 2019 lúc 21:14

Cảm ơn ạ

Khách vãng lai đã xóa
Thành Trần
Xem chi tiết
Toyama Kazuha
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 10:19

\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành

\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)

Do đó ABDN là hình bình hành

Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật

\(c,\) Kẻ đường cao AH

\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)

yen ho quynh
Xem chi tiết
Big City Boy
Xem chi tiết
HEV.As MoBiLE
24 tháng 12 2020 lúc 20:14

hình abcd có 4 cạnh vì chúng nó là hình vuông 

 

Reona Yên
Xem chi tiết
tth_new
8 tháng 8 2019 lúc 9:40

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

Bùi Thị Thảo Vân
Xem chi tiết
Cô Hoàng Huyền
26 tháng 2 2018 lúc 16:36

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Ngọc Minny
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
1 tháng 7 2017 lúc 10:04

Ôn tập : Tứ giác

Ôn tập : Tứ giác

anh hoang
Xem chi tiết