Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MinhAnh
Xem chi tiết
lê thị hương giang
18 tháng 2 2017 lúc 19:10

A B C H 7 18

Bài 2 :

Xét \(\Delta AHB\)\(\Delta AHC\) , có :

AH : cạnh chung

AB = AC ( \(\Delta\)ABC vuông cân tại A )

\(\widehat{AHB}=\widehat{AHC}=90^0\)

=> \(\Delta AHB=\Delta AHC\) ( cạnh huyền - cạnh góc vuông )

=> HB = HC ( 2 cạnh tương ứng )

mà HC = 18 cm => HB = 18 cm

=> BC = HC + HB = 18 + 18 = 36 cm

soyeon_Tiểubàng giải
18 tháng 2 2017 lúc 19:03

3) t/g ABD đều => DAB = 60o (t/c tam giác đều)

t/g ACE đều => EAC = 60o (t/c tam giác đều)

Có: DAB + BAC = EAC + BAC = 60o + BAC

=> DAC = BAE

T/g DAC = t/g BAE (c.g.c)

=> DCA = BEA (2 góc t/ư)

T/g MCE có: MCE + MEC + EMC = 180o ( tổng 3 góc trong tam giác)

=> ACE + DAC + MEC + EMC = 180o

=> 60o + BEA + MEC + EMC = 180o

=> 60o + 60o + EMC = 180o

=> EMC = 60o

Góc BMC kề bù với EMC nên BMC = 120o

Cao Mỹ Uyên
Xem chi tiết
Cao Mỹ Uyên
13 tháng 2 2019 lúc 20:33

Giúp mik vs bạn nào làm đúng mik k cho

lê tuan long
Xem chi tiết
nguyễn an phát
25 tháng 4 2021 lúc 16:13

xét ΔABH và ΔACH có:

\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)

\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))

AB=AC(ΔABC cân tại A)

⇒ΔABH=ΔACH(g-c-g)

xét ΔABM và ΔCEM có:

\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)

AM=MC(M là trung điểm của AC)

BM=ME(giả thuyết)

⇒ΔABM=ΔCEM(c-g-c)

\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)

⇒CE//AB(điều phải chứng minh)

\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)

Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)

Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)

⇒ΔACK cân tại C(điều phải chứng minh)

vì AH là tia phân giác của \(\widehat{BAC}\)

Mà ΔABC cân tại A

⇒AH là đường trung tuyến

Mặc khác M là trung điểm của AC nên BM là đường trung tuyến

Mà G là giao điểm của BM và AH 

⇒G là trọng tâm của ΔABC

xét ΔABH và ΔKCH có:

BH=CH(AH là đường trung tuyến)

\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)

\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)

⇒ΔABH=ΔKCH(g-c-g)

Mà ΔABH=ΔACH

⇒ΔKCH=ΔACH

xét ΔAHC có:

AH+HC>AC(bất đẳng thức tam giác) 

Mà AH=3GH; AC=CK(ΔKCH=ΔACH)

⇒3GH+HC>CK(điều phải chứng minh) 

Doraemon
Xem chi tiết
Ashshin HTN
5 tháng 7 2018 lúc 14:45

ai choi bang bang 2 ket ban voi minh

32-Trần Ngọc Phương Vy
Xem chi tiết
Huỳnh Kim Ngân
16 tháng 5 2022 lúc 9:31

Tham khảo

undefined

Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 9:31

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

b: Xét ΔBAC có

AI là đường trung tuyến

BD là đường trung tuyến

AI cắt BD tại M

Do đó: M là trọng tâm của ΔABC

c: BC=6cm nen BI=3(cm)

=>AI=4(cm)

hay AM=8/3(cm)

nguyễn hoàng mai
Xem chi tiết
Cuong Nguyen
Xem chi tiết
//////
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 10:08

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

Nguyễn Thị Hồng Thắm
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 9 2016 lúc 12:22

1/

a/ Ta có : GA = GB ; HA = HC

=> GH là đường trung bình của tam giác ABC

b/ Vì GH là đường trung bình nên GH // BC

=> GHCB là hình thang

c/ Ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

\(\Rightarrow GH=\frac{1}{2}BC=\frac{5}{2}\) 

d/ Hình thang nào cân?