Cho tam giác nhọn ABC. Kẻ \(AH\perp BC\) ( \(H\in BC\)). Biết AB = 13 cm; AH = 12 cm và HC = 16 cm. Tính chu vi tam giác ABC.
CÂU 3: Cho tam giác ABC nhọn , . kẻ AH \(\perp\)BC,(H \(\in\)BC ) . Biết AB=13 cm,AH=12 cm,HC=16 cm . tính chu vi tam giác ABC
tỉ lệ bn tự vẽ đúng nha
chu vi tam giác abc là
13+12+16=41cm
đáp số............
Áp dụng định lí Pi-ta-go váo tam giac AHB vuông tại H.Ta có:
\(BH^2=AB^2-AH^2=13^2-12^2=169-144=25\)
\(\Rightarrow BH=5\left(cm\right)\)
CÓ \(BC=BH+CH=5+16=21\left(cm\right)\)
Áp dụng định lí Pi-ta-go vao tam gia AHC vuông tại H.Ta có:
\(AC^2=AH^2+HC^2=12^2+16^2=144+256=400\)
\(\Rightarrow AC=20\left(cm\right)\)
chu vi tam giác ABC là: \(AC+AB+BC=20+13+21=54\left(cm\right)\)
cho tam giác nhọn ABC. Kẻ AH \(\perp\)BC (H\(\in\)BC). Biết AB = 13cm;AH = 12cm và HC = 16 cm. Tính chu vi tam giác ABC
CÁC BN THỬ VÀO TRANG CÁ NHÂN CỦA MIK ĐI, BẤT NGỜ LẮM
Tự vẽ hình nha
AH vg vs BC => Tam giác AHC và tam giác AHB v tại H
Áp dụng định lí pytago vào tam giác v AHC ta có:
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow\) \(12^2+16^2=AC^2\)
\(\Leftrightarrow\)\(AC^2=400\)
\(\Leftrightarrow\)\(AC=20cm\)
Áp dụng đlí pytago vào tam giác v AHB có:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow\)\(HB^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow\)\(HB=5cm\)
Mà HB + HC = BC
=> BC = 5+16 = 21cm
Vậy AC = 20 cm và BC = 21 cm
Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12 cm và HC=16 cm. Tính diện tích tam giác ABC.
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+BH^2=AB^2\) (định lí Py - ta - go).
=> \(12^2+BH^2=13^2\)
=> \(BH^2=13^2-12^2\)
=> \(BH^2=169-144\)
=> \(BH^2=25\)
=> \(BH=5\left(cm\right)\) (vì \(BH>0\)).
+ Ta có: \(BC=BH+HC.\)
=> \(BC=5+16\)
=> \(BC=21\left(cm\right).\)
Diện tích của tam giác \(ABC\) là:
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.12.21=126\left(cm^2\right).\)
Vậy diện tích của tam giác \(ABC\) là: \(126\left(cm^2\right).\)
Chúc bạn học tốt!
Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12 cm và HC=16 cm.
a) Tính chu vi tam giác ABC.
b) So sánh các góc của tam giác ABC
a: \(BH=\sqrt{AB^2-AH^2}=5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)
BC=BH+CH=21(cm)
Chu vi tam giác ABC là:
\(C=20+21+13=54\left(cm\right)\)
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
Cho tam giác nhọn ABC. Kẻ AH vuông góc BC ( H thuoộc BC ). Biết AB = 13 cm; AH = 12 cm và HC = 16 cm. Tính chu vị tam giác ABC.
cho tam giác nhọn ABC. Kẻ \(AH\perp BC\),\(\left(H\in BC\right)\). Biết AB= 13cm; AH=12cm; HC=16cm. Tính chu vi tam giác ABC
Giải:
Hình bạn tự vẽ nhé.
Xét tam giác ACH vuông tại H có:
AH2 + CH2 = AC2 (định lí Pytago)
AC2 = 122 + 162 = 400
=> AC = \(\sqrt{400}\) = 20 (cm) (vì AC > 0)
Xét tam giác ABH vuông tại H có:
AB2 = AH2 + BH2 (định lí Pytago)
132 = 122 + BH2
=> BH2 = 132 - 122 = 25
=> BH = \(\sqrt{25}\) = 5 (cm)
Ta có: BC = BH + CH
= 5 + 16 = 21 (cm)
=> CABC = AB + BC + AC = 21 + 13 + 20 = 54 (cm)
Vậy CABC = 54cm.
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC tại H. Biết rằng AB=13 cm, AH=12 cm,HC=16 cm.Tính độ dài cấc cạnh AC, BC.
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
\(\Leftrightarrow AC=\sqrt{400}=20cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Leftrightarrow BH=\sqrt{25}=5cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow BC=5+16=21\left(cm\right)\)
Vậy: AB=20cm; BC=21cm
Bài 60. Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC(H thuộc BC), cho biết AB=13,AH=12,hc=16 cm. Tính độ dài các cạnh của tam giác ABC.