bài 1
cho tam giác ABC có góc A<90 độ vẽ ra phía ngoài tam giác AD vuông góc vs AB ; AD=AB. AE vuông góc vs AC và AE=AC. gọi M là trung điểm của DE. kẻ tia MA. CMR: MA vuông góc vs BC
Bài 1Cho tam giác ABC cân tại B.Trên tia đối CB lấy D sao cho góc góc CDA=góc CAD.Tia Ax là tia đối của AD
a) Tính \(\frac{BAx}{CAD}=\)
b)BIết góc B =42 Tính góc A và góc CAD
Bài 2 Cho tam giác ABC có AB<AC .Trên AC lấy điểm D sao cho góc DBC=góc C và góc ADB=góc ABD.Biết góc A=72 Tính góc B,C
Bài 3 Cho tam giác ABC có góc A=80.B-C=20.Vẽ AH vuông BC,AD là P/giác A
a)Tính B,C
b) Tính BAH, HAD
p/s cần lời giải
1Cho tam giác ABC cân tại A. Kẻ BH vuông với AC biết AH= 6cm HC= 3cm. Tính BC
2 Cho tam giác ABC vuông tại A có góc B=60độ CMR AB=1/2BC
Lê Xuân Trường
1-Xét tam giác ABH và tam giác ACH có
Góc AHB = Góc AHC = 90 độ
AC = AB (Do tam giác ABC cân tại A)
Góc ABH = Góc ACH(Do tam giác ABC cân tại A)
Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )
Suy ra BH = CH =3 cm (2 cạnh tương ứng )
2 . Tui không biết làm thông cảm nhe !
có bn nào on ko giúp mk với
bài 1cho tam giác abc tia phân giác của góc b và c cắt nhau tại o chứng minh oa là tia phan giac của a
tính góc boc bết góc a =70
bài 2
cho góc xoy (xoy<180) và om là tpgiác của xoy trên tia om lấy điểm i gọi E,F lần lượt là chân đg vuông góc kẻ từ I đấn õ và oy chứng minh tam giác ioe+ tam giác iof b)è vuông góc om
b1 3 tia phân giác trong gặp nhau tại 1 điểm
boc=125
b2 vì om là tia phân giác nên IE =IF nên tam giác 0ie =oif( cgv ch )
gọi giao điểm của è và om tại h chứng minh tam giác hoe=hò tương tự như câu a
Bài 1Cho tam giác ABC trung tuyến AM biết góc \(\widehat{BAM}\) lớn hơn góc \(\widehat{CAM}\) So sánh góc B và góc C
Bài 1Cho tam giác ABC, 2 đường phân giác BD, CE cắt nhau tại I. Biết góc BIC=135 độ
a) CM tam giác ABC vuông
b)Gọi khoảng cách đến các cạnh tam giác ABC là r .CM r = (AB + AC -BC) :2
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. Gọi I,K,S là giao của các dg p/g của tam giác ABC,ABH,ACH
a) áp dụng kết quả bài trên CM AH=r + r1+r2. Trong đó r,r1,r2 lần lượt là khoảng cách từ giao điểm của các p?g trong tam giác ABC,ABH,ACH
b) Cm AI vuông góc với KS
bài 1
cho góc a(0<a<90)hãy tính sin a ,tan a nếu
a)cos a=12/13
b)cos a=3/5
bài 2
cho tam giác abc vuông tại a,đường cao ah,tính tỉ số lượng giác của góc C,từ đó suy ra tỉ số lượng giác của góc B,biết
a,AB=16cm,AC=12cm
b,Ac=13cm,CH=5cm
c,CH=3cm,BH=4cm
a) Ta có: \(cos\alpha=\dfrac{12}{13}\)
Mà: \(sin^2\alpha+cos^2a=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow sin\alpha=\dfrac{5}{13}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)
b) Ta có: \(cos\alpha=\dfrac{3}{5}\)
Mà: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)
2:
a: BC=căn 16^2+12^2=20cm
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=3/5
cos B=sin C=AB/BC=4/5
tan B=cot C=3/5:4/5=3/4
cot B=tan C=1:3/4=4/3
b: AH=căn 13^2-5^2=12cm
Xét ΔAHC vuông tại H có
sin C=AH/AC=12/13
=>cos B=12/13
cos C=HC/AC=5/13
=>sin B=5/13
tan C=12/13:5/13=12/5
=>cot B=12/5
tan B=cot C=1:12/5=5/12
c: BC=3+4=7cm
AB=căn BH*BC=2*căn 7(cm)
AC=căn CH*BC=căn 21(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=căn 21/7
sin C=cos B=AB/BC=2/căn 7
tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21
cot B=tan C=1/căn 21/2=2/căn 21
1cho tam giác ABC= tam giác MNP biết góc A= 42*, góc P=54*. Tính N?
2 cho tam giác ABC=MNP biết AC+6cm, AB+B1=8cm, Mn-NP=2cm.Tính số đo các cạnh tam giac MNP
ai lướt qua thấy giúp mình với , đag cần gấp lắm ạ :(
Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.
a) Chứng minh: BD = CE .
b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .
c) Gọi I là giao điểm của DE và AM . Chứng minh: AD^2 + IE^2/ DI^2+ AE^2 = 1.
Bài 2 Cho tam giác ABC vuông cân tại A . Gọi M là trung điểm của BC , điểm thuộc đoạn BM (D khác B và M ). Kẻ các đường thẳng BH, CI lần lượt vuông với đường thẳng AD tại H và I .
Chứng minh rằng:
a. BH = AI .
b.Góc BAM = góc ACM
c. Tam giác vuông cân
có vẽ hình. Em cần gấp ạ
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
1cho tứ giác ABCD có 2 đương chéo vuông góc với nhau tại trung điểm O của chúng.CM
a/ tam giác ABC= tam giác ADC
b/ tính các góc của tứ giác ABCD biet rằng Góc ABO= 2BAO VÁ Góc C = 600
2. cho tu giac ABCD co diem O ở trong tứ giác gọi chu vi là 2p. CMR p<OA+OB+OC+OD<3p
Có : \(AB< OA+OB;BC< OB+OC;CD< OC+OD;DA< OD+OA\)
\(P_{ABCD}=2p=AB+BC+CD+DA< 2\left(OA+OB+OC+OD\right)\)
\(\Leftrightarrow\)\(p< OA+OB+OC+OD\)
Lại có : \(OA< AB-OB;OB< BC-OC;OC< CD-OD;OD< DA-OA\)
Cộng vế theo vế từng bđt trên ta được :
\(OA+OB+OC+OD< AB+BC+CD+DA-\left(OA+OB+OC+OD\right)\)
\(\Leftrightarrow\)\(2\left(OA+OB+OC+OD\right)< AB+BC+CD+DA\) (*)
Có tiếp -,- :
\(OA< AB+OB;OA< DA+OD\)\(\Rightarrow\)\(2OA< AB+DA+OB+OD\)
\(OB< AB+OA;OB< BC+OC\)\(\Rightarrow\)\(2OB< AB+BC+OA+OC\)
\(OC< BC+OB;OC< CD+OD\)\(\Rightarrow\)\(2OC< BC+CD+OB+OD\)
\(OD< CD+OC;OD< DA+OA\)\(\Rightarrow\)\(2OD< CD+DA+OC+OA\)
\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 2\left(AB+BC+CD+DA\right)+2\left(OA+OB+OC+OD\right)\)
\(< 2\left(AB+BC+CD+DA\right)+\left(AB+BC+CD+DA\right)\) ( kết hợp với (*) )
\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 3\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow\)\(OA+OB+OC+OD< 3.\frac{AB+BC+CD+DA}{2}=3.\frac{2p}{2}=3p\)
Vậy \(p< OA+OB+OC+OD< 3p\)