Cho tam giác ABC vuông tại A, phân giác AD. Chứng minh:;;;; AD=\(\frac{AB.AC.\sqrt{2}}{AB+AC}\)
cho tam giác ABC vuông tại A, đường cao AH
a/ chứng minh tam giác AHB đồng dạng tam giác CBA
b/ kẻ phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC, BK cắt AH và AD lần lượt tại E và F. Chứng minh tam giác AEF đồng dạng tam giác BEH
c/ KD//AH
d/ chứng minh EH/AB=KD/BC
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{CBA}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của ABC( D thuộc AC). Kẻ DM vuông góc với BC tại M
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh DK=Dc và AD<DC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
Cho tam giác ABC vuông tại A đường cao AH. Vẽ đường phân giác AD của tam giác CHA , đường phân giác BK của tam giác ABC. Gọi giao của BK và AH, AD lần lượt là E và F. a) chứng minh tam giác AHB đồng dạng với tam giác CHA b) chứng minh tam giác AEF đồng dạng với tam giác BEH c) chứng minh KD //AH d) eh/ad = ed/dc
a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: BK là phân giác
=>AK/CK=BA/BC
ΔAHC có AD là phân giác
nên DH/CD=AH/AC=BA/BC
=>DH/CD=AK/CK
=>KD//AH
Cho tam giác ABC vuông tại A có góc ABC=2 góc ACB, đường cao AD.
a) Chứng minh tam giác DBA đồng dạng với tam giác ABC.
b) Kẽ tia phân giác góc ABC cắt AD tại F và cắt AC tại E. Chứng minh AB.AB=AE.AC
c) Chứng minh EA.FA=EC.FD
mình không biết vẽ hình nên chỉ giải cho bạn thôi nha
a) Xét tam giác DBA và Tam giác ABC có
D=A=90 độ
B góc chung
vậy tam giác DBA đồng dạng với tam giác ABC (g.g)
b)
vì Góc A = 90 độ nên góc B + góc C = 90 độ
mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ
<=> 3Góc C=90 độ => Góc C = 30 độ
Góc B=60 độ
mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ
Xét Tam giác ABE và Tam giác ACB có
Góc A chung
góc ABE= ECB(cmt)
vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)
=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)
c) Vì tam giác DBA đồng dạng với tam giác ABC
=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)
Tam giác ABD có BF là phân giác góc B, ta có
\(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)
Tam giác ABC có BE là phân giác góc B, ta có:
\(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)
Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H, DH cắt AB tại K.
a) Chứng minh: AD = DH.
b) Chứng minh: AD < DC.
c) Chứng minh tam giác KBC là tam giác cân.
\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
có: \(AD\): cạnh chung
\(\widehat{ABD}=\widehat{HBD}\) ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
\(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)
\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có: \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
mà \(AD=DH\) \(\Rightarrow\)\(AD< DC\)(đpcm)
\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có: \(\widehat{BHK}=\widehat{BAC}=90^0\) ( gt )
\(BH=AB\) ( vì \(\Delta ABD=\Delta HBD\))
\(\widehat{KBH}\): góc chung ( gt )
\(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
\(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
\(\Rightarrow\)\(\Delta KBC\)cân tại \(B\)
Cho tam giác ABC vuông cân tại B, AD là tia phân giác , CE là tia phân giác, AD giao CE tài O, DH vuông góc với AC tại H , I là trung điểm của AD.
a) chứng minh tam giác ABD = tam giác AHD
b)chứng minh AD = CE
c)chứng minh BO song song với DH
d)chứng minh tam giác BIH vuông cân
a)Xét tam giác ABD và tam giác AHD:
ABD=AHD=90 độ
AD chung
BAD=HAD
=>Tam giác ABD = Tam giác AHD(ch-gn)
b)Tam giác ABC vuông cân ở B => A=C
=>1/2A=1/2C
=>BAD=BEC
Xét tam giác ABD và tam giác EBC
chung góc B
BAD=BEC
BC=AC
=>Tam giác ABD = Tam giác EBC(g-c-g)
=>AD = CE(2 cạnh tương ứng)
c)HCD = 45 độ
CDH=90 độ
=>DHC=45 độ(1)
Mà AD và CE là phân giác của A và C
AD,CE cắt nhau ở O
=>BO là phân giác góc B
=>ABO=CBO=45 độ(2)
Từ (1) và (2) =>CBO=DHC=45 độ
Mà 2 góc này so le trong
=> BO song song với DH
Ý đ mình chưa bít làm
Cho tam giác ABC vuông tại A, đường cao AH.a) Chứng minh: tam giác AHB ~ tam giác CHA.b) Kẻ đường phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC (D thuộc BC; K thuộc AC). BK cắt lần lượt AH và AD tại E và F. Chứng minh:tam giác AEF ∽ tam giác BEH .c) Chứng minh: KD // AH.d) Chứng minh: EH/AB =KD/BC
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc BC tại H và DH tại K.
a) Chứng minh AD=DH.
b) So sánh độ dài hai cạnh AD và DC.
c) Chứng minh tam giác KBC là tam giác cân.
a) Xét \(\Delta\)vuông BAD và \(\Delta\)vuông BHD có :
Góc BAD = góc BHD ( = 900 )
BD chung
Góc ABD = góc HBD ( BD là tia phân giác )
\(\Rightarrow\)\(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền - góc nhọn )
\(\Rightarrow\)AD = DH ( cặp cạnh tương ứng ) (1)
b) Xét tam giác DHC :
Góc DHC = 900 > góc C
\(\Rightarrow\)DC > DH ( quan hệ giữa góc và cạnh đối nhau ) (2)
Từ (1) , (2) \(\Rightarrow\)DC > AD
c) theo chứng minh câu a có :
Tam giác BAD = tam giác BHD
\(\Rightarrow\) BA = BC
Xét tam giác ADK và tam giác HDC có:
Góc KAD = góc CHD ( = 900 )
AD = DH ( cm câu a)
Góc ADK = góc HDC ( đối đỉnh )
\(\Rightarrow\)tam giác ADK = tam giác HDC
\(\Rightarrow\)AK = HC ( cặp cạnh tương ứng )
Ta có :
BK = BA + AK
BC = BH + HC
mà BA = BH ; AK = HC
\(\Rightarrow\)BK = BC
\(\Rightarrow\) tam giác KBC cân
ADK VÀ HDC ko đối đỉnh nhé bạn