Cho tam giác ABC vuông tại A, AD là phân giác (AB<AC).Chứng minh:
\(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A, phân giác AD. Chứng minh rằng : \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Cho tam giác ABC vuông tại A. đường phân giác AD. Chứng minh rằng: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Cho tam giác ABC vuông tại A. đường phân giác AD. Chứng minh rằng: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
cho tam giác ABC vuông tại A có AD là phân giác trong. Chứng minh: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Cho tam giác ABC vuông tại A , phân giác trong AD và phân giác ngoài AE.Cho biết AB<AC.CMR
a, \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b,\(\frac{1}{AB}-\frac{1}{AC}=\frac{\sqrt{2}}{AE}\)
Cho tam giác ABC vuông tại A , có tia phân giác AD . CMR
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{\sqrt{2}}{AD}\)
Cho tam giác ABC nhọn, kẻ đường phân giác AD. Lấy M,N trên AB,AC sao cho DM//AC, DN//AB. Chứng minh
a) 1/DM = 1/AB + 1/AC
b) AD = 2.AB.AC/ (AB+AC). cos A/2
Cho tam giác ABC vuông tại A, trung tuyến AD, trọng tâm G
a,Cho biết \(\frac{AB}{AC}=\frac{3}{4}\)và AD=5 tính diện tích tam giác ABC
b, Qua G kẻ đường thẳng cắt AB, AC lần lượt tại M,N. Chứng minh rằng \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
c,Kẻ các đường trung tuyến BE, CF của tam giác ABC Chứng minh rằng \(\sqrt{\frac{GA}{GD}}+\sqrt{\frac{GB}{GE}}+\sqrt{\frac{GC}{GF}}=\frac{3\sqrt{2}}{2}\)