Cho tam giác ABC, góc A =90 độ, AB= 7,5 cm ; AC=10cm. Đường trung tuyến Am Tính các tỉ số lượng giác góc AMB
cho tam giác abc có góc a = 60 độ góc c < góc B < 90 độ
a, cm ab<ac
b cm trên cạnh ac lấy điểm m sao cho am = ab .Chứng minh tam giác abm là tam giác đều
c, so sánh các cạnh của tam giác abc
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm và BC = 7,5 cm. a) Chứng minh tam giác ABC vuông tại A. b) Tính các góc B, C và đường cao AH của tam giác đó (Góc làm tròn đến phút, độ dài làm tròn đến chữ số thập phân thứ nhất)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
cho tam giác ABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a, Chứng minh tam giác ABC vuông
b, Tính góc B, góc C, đường cao AH
Giải
a. Xét \(\Delta ABC\) ta có :
\(AB^2+AC^2=\) \(6^2+4,5^2=56,25\) (cm)
\(BC^2=7,5^2=56,25\) (cm)
\(\Rightarrow\) \(\Delta ABC\) là tam giác vuông
b. - Áp dụng hệ thức về một số cạnh và đường cao trong tam giác vuông ta có :
AB.AC = BC.AH
\(\Leftrightarrow6.4,5=7,5.AH\)
\(\Leftrightarrow AH=\dfrac{6.4,5}{7,5}\)
\(\Leftrightarrow AH=3.6\) (cm)
- Trong \(\Delta ABH\perp H\) ta có :
sin B = \(\dfrac{AH}{AB}=\dfrac{3,6}{6}=0,6\)
\(\Rightarrow\) Góc B \(\approx\) \(37\) độ
\(\Rightarrow\) Góc C = 53 độ
Vậy AH = 3,6cm, góc B = 37 độ, góc C = 53 độ
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác ABC có AB=6 cm ; AC = 4,5 cm : BC= 7,5 cm
a) Chứng minh tam giác ABC vuông ở A
Tính góc B ; góc C ; đường cao AH của tam giác ABC
b) Tìm tập hợp điểm M sao cho S tam giác ABC = S tam giác BMC
Cho tam giác ABC (góc A=90 độ) ;AH vuông góc với BC; phân giác AD; BD=7,5; DC=10.Tính AH? BH? HD?
Xét ΔABC có AD là đường phân giác
nên AB/AC=BD/CD
=>AB/AC=3/4
=>HB/HC=9/16
=>\(HB=17.5\cdot\dfrac{9}{25}=6.3\)
=>HC=11,2
=>AH=8,4
cho mik hỏi :Cho tam giác ABC, có góc A khác 90 độ ,AB=6 cm, BC=10 cm tính diện tích tam giác ABC
có
\(AB^2+AC^2=BC^2\)
=>\(6^2+AC^2=10^2\)
=>
CÓ
\(AC^2+AB^2=BC^2\left(PYTAGO\right)\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\)
DIỆN TÍCH TAM GIÁC VUÔNG BẰNG TÍCH 2 CẠNH GÓC VUÔNG CHIA 2
\(\frac{8x6}{2}=24\left(cm^2\right)\)
vậy diên tích tam giác vuông ABC vuông tại A là 24cm2
Bài 1 tam giác ABC vuông tại A có AB=5 cm BC = 13 cm . Tính góc B và góc C
Bài 2 tam giác ABC có A = 90 độ góc B = 30 độ cạnh BC = 10 cm . Tính góc C cạnh AB , AC
1.Cho tam giác ABC nhọn, vẽ đường cao AH. Tính chu vu của tam giác ABC, biết AC = 13cm, AH = 12 cm, BH = 9cm
2. Cho tam giác ABC, góc A = 90 độ. BIết AB + AC = 49 cm; AB - AC = 7cm. Tínnh BC
3. Cho tam giác ABC, AB = AC =17 cm. Kẻ BD vuông góc với AC. Tính BC biết BD = 15cm
Cho tam giác ABC có góc ABC lớn hơn 90 độ, AB = 1/2 AC. Cm : 2 lần góc C lớn hơn góc A