Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:31

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:30

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Phạm Duy
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 14:10

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:23

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:24

Bài 2: 

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Nguyễn Phương Linh
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Ngọc Anh
Xem chi tiết
My Tran
22 tháng 7 2018 lúc 13:36

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

Không Tên
22 tháng 7 2018 lúc 20:37

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

GDA NAM
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 12:33

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 14:32

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=2^2+5^2=29\)

\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)

nguyễn minh thơ
Xem chi tiết
乇尺尺のレ
4 tháng 5 2023 lúc 11:54

Hình vẽ:

B A H C 5cm 12cm

Giải

a. Xét ΔHBA và ΔABC có:

\(\widehat{B}\)  chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ΔHBA ∼ ΔABC (g.g)

b. Xét ΔABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(định lí py-ta-go)

         \(=5^2+12^2\)

         \(=169\)

\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)

Vì ΔABC ∼ ΔHBA (cmt)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)

\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)

\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 20:10

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC 

=>HB*HC=4

BH+CH=5

=>BH=5-CH

HB*HC=4

=>HC(5-CH)=4

=>5HC-HC^2-4=0

=>HC^2-5HC+4=0

=>HC=1cm hoặc HC=4cm

TH1: HC=1cm

=>HB=4cm

\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)

TH2: HC=4cm

=>HB=1cm

\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)

Ly Ly
Xem chi tiết
An Thy
11 tháng 7 2021 lúc 17:46

Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\left(cm\right)\)

Ta có: \(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=\dfrac{16}{5}\left(cm\right)\)

Akai Haruma
11 tháng 7 2021 lúc 17:46

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8$ (cm)

$CH=BC-BH=5-1,8=3,2$ (cm)

 

Akai Haruma
11 tháng 7 2021 lúc 17:49

Hình vẽ:

Phạm hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 13:33

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)