Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\left(cm\right)\)
Ta có: \(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=\dfrac{16}{5}\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8$ (cm)
$CH=BC-BH=5-1,8=3,2$ (cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4(cm)