Tam giác ABC có AB= AC= a ; A B C ^ = 120 ° . Tính độ dài vectơ tổng A B → + A C →
A.
B.
C.
D.
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Bài 1:cho tam giác ABC có AB = 4cm , AC = 5cm, BC = 3cm
a)chứng minh tam giác ABC là tam giác vuông
b)so sánh các góc của tam giác ABC
Bài 2:cho tam giác ABC có AB<AC . Tia phân giác của góc A cắt BC tại D.
a)Chúng minh tam giác ABD = tam giác AED
b)So sánh BD, DC
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//KH
c: Ta có: AC//HK
AC//HM
HK,HM có điểm chung là H
Do đó: K,H,M thẳng hàng
Ta có: AMHN là hình chữ nhật
=>\(\widehat{NAH}=\widehat{NMH}\)
mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)
nên \(\widehat{NMH}=\widehat{CKH}\)
Xét tứ giác MNCK có CN//MK
nên MNCK là hình thang
Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)
nên MNCK là hình thang cân
d: Ta có: AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là các đường trung tuyến
CO cắt AI tại D
Do đó: D là trọng tâm của ΔCAH
=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)
=>AK=3AD
cho tam giác ABC va tam giác A'B'C' có AB/A'B' =AC/AC,góc A= góc A'.C/m tam giác ABC đồng dạng với tam giác A'B'C'
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, biết AB=12cm, AC=16cm
a) Tính BC và AH
b) Chứng minh tam giác BHA đồng dạng tam giác ABC
a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc B chung
=>ΔBHA đồng dạng với ΔBAC