Chứng minh:
A\(B hợp C)=(A\B) giao (A\C) ; A\(B giao C)=(A\B) hợp (A\C)
chứng minh rằng với mọi tập hợp A, B, C
a, A giao (B hợp C)= (A giao B) hợp (A giao C)
b, (A \ B) \ C ⊂ A \ C
a. Xét $x\in A\cap (B\cup C)$
$\Rightarrow x\in A$ và $x\in B\cup C$
\(\Rightarrow \left\{\begin{matrix} x\in A\\ \left[\begin{matrix} x\in B\\ x\in C\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\in A\\ x\in B\end{matrix}\right.\\ \left\{\begin{matrix} x\in A\\ x\in C\end{matrix}\right.\end{matrix}\right.\Rightarrow x\in (A\cap B)\cup (A\cap C)(*)\)
Xét $x\in (A\cap B)\cup (A\cap C)$
$\Rightarrow x\in A\cap B$ hoặc $x\in A\cap C$
$\Rightarrow x\in A$ và $x\in B$ hoặc $x\in C$
Tức là: $x\in A\cap (B\cup C)(**)$
Từ $(*); (**)$ suy ra $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
b. Xét $x\in (A\setminus B)\setminus C$ bất kỳ
$\Rightarrow x\in A$ và $x\not\in B, x\not\in C$
Vì $x\in A, x\not\in C$ nên $x\in A\setminus C$
Do đó: $(A\setminus B)\setminus C\subset A\setminus C$
Cho A=a+b-5;B=-b-c+1 Chứng minh:A+B=C-D
Cho A=a+b-5;B=-b-c+1 Chứng minh:A+B=C-D
Cho góc nhọn xOy ; trên tia Ox lấy 2 điểm A và B (A nằm giữa O,B). Trên Oy lấy 2 điểm C,D (C nằm giữa O,D) sao cho OA=OC và OB=OD . Chứng minh:
a) ΔAOD = ΔCOB
b) ΔABD = ΔCDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID.
Bài 1:∆ABC cân tại A,G là trọng tâm . O là giao điểm của hai đường trung trực cạnh AB,AC
Chứng minh:a,∆ BOC cân
b, chứng minh: ba điểm thẳng hàng O,A,G
(1) O nằm trên đường trung trực của AC \(\Rightarrow\) OA = OC
(2) O nằm trên đường trung trực của AB \(\Rightarrow\) OA = OB
Từ 1 và 2 \(\Rightarrow\) OB = OC
Vậy tam giác OBC cân
cho▲abc vuông tại a. đường phân giác bd. kẻ dh⊥bc. k là giao điểm của ba và hd. chứng minh:
a) ad=hd b)bd⊥kc c)2(ad+ak)>kc
a: Xet ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: Xet ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc B chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
mà BD là phan giác
nen BD vuông góc KC
1,Cho (a+b+c)2=3(a2+b2+c2) Chứng minh:a=b=c
2,Cho a+b+c=0.Chứng minh:a4+b4+c4=2(a2b2+b2c2+c2a2)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
mà \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)
cho 1/c=1/2x(1/a+1/b) (a,b,c#0;b#c)
Chứng minh:a/b=a-c/c-b