Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
BiBi

1,Cho (a+b+c)2=3(a2+b2+c2) Chứng minh:a=b=c

2,Cho a+b+c=0.Chứng minh:a4+b4+c4=2(a2b2+b2c2+c2a2)

bảo phạm
24 tháng 12 2019 lúc 18:20

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

Khách vãng lai đã xóa
bảo phạm
24 tháng 12 2019 lúc 18:18

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tuyển Nguyễn Đình
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Kwalla
Xem chi tiết
dmdaumoi
Xem chi tiết
Tiểu Đào
Xem chi tiết
địt mẹ mày
Xem chi tiết
Sương Đặng
Xem chi tiết
Kiều Vũ Minh Đức
Xem chi tiết