\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
mà \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)