\(a^2+b^2+c^2 +3 = 2(a+b+c) \)
\(=> a^2 + b^2 + c^2 - 2a - 2b - 2c + 1 + 1 + 1 = 0\)
\(=> (a^2-2a+1) + (b^2-2b+1)+(c^2-2c+1) = 0\)
\(=> (a-1)^2 + (b-1)^2 + (c-1)^2 =0\)
Vì mỗi số hạng \(\ge0\) nên dấu bằng xảy ra khi:
\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\Leftrightarrow a=b=c=1\)