Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị H
Xem chi tiết
ghdoes
Xem chi tiết
Tạ Vũ Thiên Thiên
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Nguyễn
13 tháng 4 lúc 16:16

VMO 2007 bạn nhé

Cao Thị Trà My
Xem chi tiết
Cao Thị Trà My
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Akai Haruma
31 tháng 5 2023 lúc 10:56

Bài này có đúng là của lớp 7 không bạn?

Nguyễn Hà Giang
Xem chi tiết
Vũ Ngọc Anh
12 tháng 11 2021 lúc 23:29

A nhé

Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 23:32

Chọn A

Hoàng Tử Lớp Học
Xem chi tiết
Thắng Nguyễn
5 tháng 11 2016 lúc 20:27

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)

nguyễn huy hoàng
Xem chi tiết