Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
x căn yz=8; y căn xz=2; z căn xy=1. Tìm x,y,z
tìm max:
a, \(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với 1/2<=x<= căn 5/2
b, \(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)};x,y,z>0\)
Cho bt sau
E= {[(x+2 căn x)/(x + 4 căn x +4]+2x/4-x}:{[(căn x -1)/(x-2 căn x)-(2 căn x +2)/(x + căn x)]}
a) Rút gọn E
b) So sánh E với căn x Khi x >9
c) Tìm x để k=2E/căn x có gt Z
Thank you very much
Căn x^2 - 4x +5
Căn x^2 -4 (đến đây không có căn nha)-x^2 -4
Căn 4x^2 -4x +1( k có căn) =5-x
Căn x^2 +4x +8(đây cx k có căn nx) =x-3
Tks trc nka
a.tìm a+b+c=2\(\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
b.tìm x,y,z thỏa mãn x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
cho x,y,z>0 thỏa xyz=x+y+z+2. chứng minh:
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3\sqrt{xyz}}{2}\)