Tìm n thuộc N, biết: (2n+1; 3n+4) = 1
1.Tìm n thuộc N* biết 2n+1 và 3n+1 là số chính phương.
2.Tìm m,n thuộc N* biết 3m=n2+2n-8
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
tìm n thuộc N biết a, n+1 thuộc Ư(2n+7) b, 2n-1 chia hết cho 4 - n c,n^2+2n-6 chia hết cho n-4
TÌM n thuộc N biết(2n+8) chia hết cho (2n+1)
Theo bài ra ta có:
2n + 8 chia hết cho 2n + 1
=> ( 2n + 1 ) + 7 chia hết cho 2n + 1
=> 7 chia hết cho 2n + 1
=> 2n + 1 thuộc { 1 ; 7 }
=> 2n thuộc { 0 ; 6 }
=> n thuộc { 0 ; 3 }
Tìm n thuộc N* biết :
1 + 3 + 5 +....+(2n+1)=169
$1+3+5+...+(2n+1)=169$
Số các số hạng của tổng đó là:
$[(2n+1)-1]:2+1=n+1$ (số)
Khi đó, tổng các số trên bằng:
$[(2n+1)+1]\cdot (n+1):2=169$
$\Rightarrow (2n+2)(n+1):2=169$
$\Rightarrow 2(n+1)^2:2=169$
$\Rightarrow (n+1)^2=(\pm13)^2$ (1)
Vì \(n\in \mathbb{N^*}\) nên \(n+1>0\) (2)
Từ (1) và (2) $\Rightarrow n+1=13$
$\Rightarrow n=13-1=12(tm)$
Vậy $n=12$.
\(1+3+5+...+\left(2n+1\right)=169\)
\(\Rightarrow\left[\left(2n+1-1\right):2+1\right]\left(2n+1+1\right):2=169\)
\(\Rightarrow\left(2n:2+1\right)\left(2n+2\right):2=169\)
\(\Rightarrow\left(n+1\right)\left(n+1\right)=169\)
\(\Rightarrow\left(n+1\right)^2=169\)
\(\Rightarrow\left(n+1\right)^2=13^2\)
TH1:
\(\Rightarrow n+1=13\)
\(\Rightarrow n=12\) (thỏa mãn)
TH2:
\(\Rightarrow n+1=-13\)
\(\Rightarrow n=-14\) (không thỏa mãn )
bài 1:Tìm n thuộc N biết:
a) 2n+1 chia hết cho n-3
b)n^2 + 3 chia hết cho n+1
bài 2:tìm n biết 1+3+5+7+...+(2n+1)=169
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
bài 1:Tìm n thuộc N biết:
a) 2n+1 chia hết cho n-3
b)n^2 + 3 chia hết cho n+1
bài 2:tìm n biết 1+3+5+7+...+(2n+1)=169
a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3
=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }
=> n - 3 = { 1 ; 7 }
=> n = { 4 ; 11 }
b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1
=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }
=> n + 1 = { 1 ; 2 ; 4 }
=> n = { 0 ; 1 ; 3 }
a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp
a) Ta có:
(2n + 1) chia hết cho (n - 3)
=> [(2n - 6 ) + 7] chia hết cho (n - 3)
=> [2(n - 3) - 7] chia hết cho (n - 3)
Vì 2(n - 3) chia hết cho (n - 3) nên để [2(n - 3) - 7] chia hết cho (n - 3) thì 7 chia hết cho (n - 3)
=> (n - 3) \(\in\)Ư(7)
Mà Ư(7) = {1 ; 7}
nên n - 3 \(\in\){1 ; 7}
=> n \(\in\){4 ; 10}
Vậy n = 4 hoặc n = 10
b) Ta có:
(n2 + 3) chia hết cho (n + 1)
(n2 + n - n + 3) chia hết cho (n + 1)
[n(n + 1) - (n + 1) + 2] chia hết cho (n + 1)
Vì n(n + 1) chia hết cho (n + 1) và (n + 1) chia hết cho (n + 1) nên để [n(n + 1) - (n + 1) + 2] chia hết cho (n + 1) thì 2 chia hết cho(n+1)
=> n + 1 \(\in\)Ư(2)
Mà Ư(2) = {1 ; 2}
nên n + 1 \(\in\){1 ; 2}
=> n \(\in\){0 ; 1}
Vậy n = 0 hoặc n = 1
tìm n thuộc Z biết n+1 thuộc Ư(n2+2n-3)
tìm các số nguyên n, biết:
a) 2n+8 thuộc B(n+1)
b) 3n-1 chia hết cho n-2
c) n+1 thuộc Ư(n2+2n-2)