Tìm m để giá trị lớn nhất của hàm số y = 2x + m 2 − 1 trên đoạn [1; 3] bằng 5.
A. m = 2
B. m = 1
C. m = 0
D. Đáp án khác
Tìm m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn [-2; 1] đạt giá trị nhỏ nhất. Giá trị của m là
A. 4
B. 3
C. 1
D. 2
y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5
Ta có ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1
Giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi
m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3
Chọn B.
Tìm m để giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn - 2 ; 1 đạt giá trị nhỏ nhất. Giá trị của m là
A. 5
B. 4
C. 1
D. 3
Tìm giá trị lớn nhất M của hàm số y = x 2 + 2 x + 2 x + 1 trên đoạn - 1 2 ; 2 .
A. M = 5 2
B. M = 2
C. M = 10 3
D. M = 3
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số y=|x^2+2x+m-4| trên đoạn [-2;-1] bằng 4
Tìm tổng tất cả các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = x 2 - 2 x + m trên đoạn [-1; 2] bằng 5.
A. -4
B. 2
C. 0
D . -2
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với m a x [ - 1 , 2 ] = | m - 1 | ,
ta có m - 1 ≥ m + 3 | m - 1 | ≥ | m | | m - 1 | = 5
↔ | m - 1 | ≥ m + 3 | m - 1 | ≥ | m | m = - 4 ∨ m = 6 ↔ m = - 4
TH2: Với
m a x [ - 1 , 2 ] y = | m + 3 | ↔ | m + 3 | ≥ | m - 1 | | m + 3 | ≥ | m | | m + 3 | ≥ 5
↔ | m + 3 | ≥ | | m - 1 | | m + 3 | ≥ | m | m = 2 ∨ m = - 8 ↔ m = 2
TH3: Với
m a x [ - 1 , 2 ] y = | m | ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m | = 5 ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | m = 5 ∨ m = - 5
( vô nghiệm)
Chọn D.
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x - m 2 - 2 x - m trên đoạn [0;4] bằng -1
A. 3
B. 2
C. 1
D. 0
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x - m 2 - 2 x - m trên đoạn [0;4] bằng -1.
A. 0
B. 2
C. 3
D. 1
Chọn D
Điều kiện: x ≠ m
Hàm số đã cho xác định trên [0;4] khi
Ta có
Hàm số đồng biến trên đoạn [0;4] nên
Kết hợp với điều kiện (*) ta được m = -3. Do đó có một giá trị của m thỏa yêu cầu bài toán.
tìm tất cả các giá trị nguyên âm của m để giá trị lớn nhất của hàm số
y=\(\left|x^2-2x-m\right|\) trên đoạn [-3;2] bằng 10
\(y=\left|x^2-2x-m\right|=-x^2+2x+m\)
\(\left(nếu:x^2-2x-m< 0\right)\)
\(f\left(x\right)=-x^2+2x+m\Rightarrow x=\dfrac{-b}{2a}=1\in\left[-3;2\right]\)
\(f\left(-3\right)=m-15\)
\(f\left(1\right)=m+1\)
\(f\left(2\right)=m\Rightarrow f\left(-3\right)< f\left(2\right)< f\left(1\right)\)
\(\Rightarrow max_{f\left(x\right)}=m+1=10\Leftrightarrow m=9\)
\(do..m< 0\Rightarrow m=9\left(ktm\right)\)
\(\Rightarrow không\) \(có\) \(giá\) \(trị\) \(m\) \(thỏa\)
Cho hàm số y=-2x2-2mx+m+5
Tìm tất cả các giá trị của tham số m để hàm số có giá trị lớn nhất trên đoạn [1;3] bằng 5.