Tím x,y,z biết 5x=2y ; 2y=3z và x.y=90
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm x,y,z biết: 3x=2y,5x=7y và x-y+z=32
Tìm x,y,z biết:
5x=2y, 3y=5z và x+y+z = -350
Tìm các số x, y, z biết rằng:
a) x : y : z = 5 : 3 : 4 và x + 2y – z = –126
b) 5x = 2y, 3y = 5z và x + y + z = –970
c) 3x = 4y = 5z và x + y + z = 47
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
c, \(3x=4y=5z\Rightarrow\frac{3x}{60}=\frac{4y}{60}=\frac{5z}{60}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{47}{47}=1\)
\(x=20;y=15;z=12\)
tìm x,y,z, biết: 5x = 2y ; 3y = 5z và x - y + z = 288
Bạn ơi, đề sai hay sao í! Mk tính ra bằng 0, bn xem lại đề đi!
Cách 1: (dùng tỉ dãy số bằng nhau)
Ta có: \(5x=2y\Rightarrow\dfrac{2}{x}=\dfrac{5}{y}\)(1)
\(3y=5z\Rightarrow\dfrac{5}{y}=\dfrac{3}{z}\) (2)
Từ (1) và (2) ,đặt: \(\dfrac{2}{x}=\dfrac{5}{y}=\dfrac{3}{z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{k}=\dfrac{2}{288}\\y=\dfrac{5}{k}=\dfrac{5}{288}\\z=\dfrac{3}{k}=\dfrac{3}{288}\end{matrix}\right.\) (3)
Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:
\(\dfrac{2}{x}=\dfrac{5}{y}=\dfrac{3}{z}=\dfrac{2-5+3}{x-y+z}=\dfrac{0}{288}\)(4)
Suy ra k = 288. Dựa và (3) ta có: \(\left\{{}\begin{matrix}x=\dfrac{2}{k}=\dfrac{2}{288}\\y=\dfrac{5}{k}=\dfrac{5}{288}\\z=\dfrac{3}{k}=\dfrac{3}{288}\end{matrix}\right.\)
Vậy .....
ôi chết, bạn sửa cái biểu thức:
\(\left\{{}\begin{matrix}x=\dfrac{2}{k}=\dfrac{2}{288}\\y=\dfrac{5}{k}=\dfrac{5}{288}\\z=\dfrac{3}{k}=\dfrac{3}{288}\end{matrix}\right.\)(3)
Thành \(\left\{{}\begin{matrix}x=\dfrac{2}{k}\\y=\dfrac{5}{k}\\z=\dfrac{3}{k}\end{matrix}\right.\)(3)
nhé! Mình đánh máy nhầm
tìm x,y,z biết x^2+y^2+5x^2y^2+60=37xy
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)