xác định vị trí tương đối của 2 đường thẳng sau đây △1: x-2y+1=0; △2: -3x+6y-10=0
Xác định vị trí tương đối của 2 đường thẳng sau đây: (d1): x- 2y+ 1=0 và (d2): -3x+ 6y-1 =0 .
A. Song song.
B. Trùng nhau.
C. Vuông góc nhau.
D. Cắt nhau.
Đường thẳng (d1) có vtpt và
d2 có vtpt
Hai đường thẳng này có
nên hai đường thẳng này song song với nhau.
Chọn A.
xác định vị trí tương đối giữa 2 đường thẳng delta 1: x-2x+1=0 và delta 2: -3x-4y-1=0
Xem lại đề phương trình đường thẳng delta1
xác định vị trí tương đối giữa hai đường thảng delta1: x-2y+1=0 và delta2: -3x+6y-10=0
Do \(\dfrac{1}{-3}=\dfrac{-2}{6}\ne\dfrac{1}{-10}\) nên 2 đường thẳng đã cho song song
xét vị trí tương đối của đường thẳng (d) và đường tròn (C) sau đây : (d) : 3x + y + m = 0 ; (C) : x2 + y2 - 4x + 2y + 1 = 0
Xét vị trí tương đối của đường thẳng Δ: x – 2y + 1 = 0 với mỗi đường thẳng sau:
d1: -3x + 6y – 3 = 0;
d2: y = -2x;
d3: 2x + 5 = 4y.
Xét Δ và d1, hệ phương trình: có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.
Xét Δ và d2, hệ phương trình: có nghiệm duy nhất (-1/5; 2/5) nên
Δ cắt d2 tại điểm M(-1/5; 2/5).
Xét Δ và d3, hệ phương trình: vô nghiệm
Vậy Δ // d3
xét vị trí tương đối của đường thẳng (d) và đường tròn (C) sau đây : (d) : 3x + y + m = 0 ; (C) : x2 + y2 - 4x + 2y + 1 =0
xét vị trí tương đối của đường thẳng (d) và đường tròn (C) sau đây : (d) : 3x + y + m = 0 ; (C) : x2 + y2 - 4x + 2y + 1 =0
xét vị trí tương đối của đường thẳng (d) và đường tròn (C) sau đây : (d) : 3x + y + m = 0 ; (C) : x2 + y2 - 4x + 2y + 1 =0
xét vị trí tương đối của đường thẳng (d) và đường tròn (C) sau đây : (d) : 3x + y + m = 0 ; (C) : x2 + y2 - 4x + 2y + 1 =0