Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn long
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 11:46

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2019 lúc 12:12

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2017 lúc 17:43

Đáp án B

Cách 1: Tư duy tự luận

Xét hàm số f x = sin x 1 + cos x  trên  0 ; π

Đạo hàm f ' x = cos x 1 + cos x − sin 2 x   = 2 cos 2 x + cos x − 1 ;

f ' x ⇔ cos x = − 1 cos x = 1 2 ⇔ x = π + k 2 π x = ± π 3 + k 2 π k ∈ ℤ

 Do x ∈ 0 ; π nên x = π 3 ; x = π .

Ta có

f 0 = f π = 0 ; f π 6 = 3 3 4

Vậy  

M = max 0 ; π f x = 3 3 4 ; m = min 0 ; π f x = 0

Cách 2: Sử dụng máy tính cầm tay

Quan sát bảng giá trị, ta thấy

M = max 0 ; π f x ≈ 1,295... ≈ 3 3 4 ; m = min 0 ; π f x = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 4 2019 lúc 11:43

Chọn đáp án A

Từ giả thiết

 

Suy ra

Từ (1) và (2) suy ra  1 + f 2 x = sin x + C

Thay x = 0 vào ta được:

do f 0 = 3  

Suy ra 

do hàm số f x liên tục, không âm trên 0 ; π 2  

Đặt t = sin x

Xét hàm số g t = t 2 + 4 t + 3  trên 1 2 ; 1  

Ta có

⇒ Hàm số g t đồng biến trên 1 2 ; 1

Khi đó

 

vvvvvvvv
Xem chi tiết
Nguyễn Thị Ngọc Thơ
1 tháng 7 2021 lúc 21:43

\(ĐK:sinx-cosx\ne-2\)

\(< =>2y-1=sinx\left(1-y\right)+cosx\left(y+3\right)\)

Theo Bunhiacopxki:

\(\left[sinx\left(1-y\right)+cosx\left(y+3\right)\right]^2\)\(\le\left(sin^2x+cos^2x\right)\left[\left(1-y\right)^2+\left(y+3\right)^2\right]\)

\(< =>\left(2y-1\right)^2\le2y^2+4y+10\)

\(< =>2y^2-8y-9\le0\)

=> Bấm máy tìm Max, Min của y

(Sry máy tính của t bị ngáo không bấm ra)

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 21:40

\(\Rightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)

\(\Rightarrow\left(y-1\right)sinx-\left(y+3\right)cosx=1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất

\(\Rightarrow\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow2y^2-8y-9\le0\)

\(\Rightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)

\(y_{max}=\dfrac{4+\sqrt{34}}{2}\) ; \(y_{min}=\dfrac{4-\sqrt{34}}{2}\)

Hồng Phúc
1 tháng 7 2021 lúc 21:50

\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)

\(\Leftrightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)

\(\Leftrightarrow\left(y-1\right)sinx-\left(y+3\right).cosx=1-2y\)

Phương trình có nghiệm khi \(\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow y^2-2y+1+y^2+6y+9\ge4y^2-4y+1\)

\(\Leftrightarrow2y^2-8y-9\le0\)

\(\Leftrightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2017 lúc 7:53

Đáp án B

nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình có nghiệm.

Sử dụng điều kiện có nghiệm của phương trình suy ra được vậy m = -1 và 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2017 lúc 6:12

Chọn B

Vì sinx-cosx+3>0 nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình (1-y)sinx+(y+1)cosx=(1+3y) có nghiệm.

Sử dụng điều kiện có nghiệm của phương trình A.sinx+B.cosx=C. Vậy m = -1 và M=1/7

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 13:32

Đáp án C

Đặt t = tan x 2 ta có: y = sin x + 2 cos x + 1 s i n x + cos x + 2

= 2 t 1 + t 2 + 2 1 − t 2 1 + t 2 + 1 2 t 1 + t 2 + 1 − t 2 1 + t 2 + 2 = − t 2 + 2 t + 3 t 2 + 2 t + 3  

Tập các giá trị của y là tập các giá tri làm cho PT y = − t 2 + 2 t + 3 t 2 + 2 t + 3 ⇔ y + 1 t + 2 y − 1 t + 3 y − 1 = 0  có nghiệm với ẩn t

⇒ Δ ' = y − 1 2 − 3 y + 1 y − 1 = − 2 y 2 − 2 y + 4 ≥ 0 ⇒ − 2 ≤ y ≤ 1 ⇒ m = − 2 , M = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2018 lúc 10:41