Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vvvvvvvv

tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)

Nguyễn Thị Ngọc Thơ
1 tháng 7 2021 lúc 21:43

\(ĐK:sinx-cosx\ne-2\)

\(< =>2y-1=sinx\left(1-y\right)+cosx\left(y+3\right)\)

Theo Bunhiacopxki:

\(\left[sinx\left(1-y\right)+cosx\left(y+3\right)\right]^2\)\(\le\left(sin^2x+cos^2x\right)\left[\left(1-y\right)^2+\left(y+3\right)^2\right]\)

\(< =>\left(2y-1\right)^2\le2y^2+4y+10\)

\(< =>2y^2-8y-9\le0\)

=> Bấm máy tìm Max, Min của y

(Sry máy tính của t bị ngáo không bấm ra)

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 21:40

\(\Rightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)

\(\Rightarrow\left(y-1\right)sinx-\left(y+3\right)cosx=1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất

\(\Rightarrow\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow2y^2-8y-9\le0\)

\(\Rightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)

\(y_{max}=\dfrac{4+\sqrt{34}}{2}\) ; \(y_{min}=\dfrac{4-\sqrt{34}}{2}\)

Hồng Phúc
1 tháng 7 2021 lúc 21:50

\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)

\(\Leftrightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)

\(\Leftrightarrow\left(y-1\right)sinx-\left(y+3\right).cosx=1-2y\)

Phương trình có nghiệm khi \(\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow y^2-2y+1+y^2+6y+9\ge4y^2-4y+1\)

\(\Leftrightarrow2y^2-8y-9\le0\)

\(\Leftrightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)


Các câu hỏi tương tự
Thiên Yết
Xem chi tiết
ko có tên
Xem chi tiết
vvvvvvvv
Xem chi tiết
ko có tên
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
vvvvvvvv
Xem chi tiết
Đức Hùng Mai
Xem chi tiết
linh khánh
Xem chi tiết