Cho a/b=b/c=c/d và a+b+c khác 0
tính A =a.b^2.c^2016/a^2019; B=(19a+b+2100c)^2018/(a+219b)^2018
Cho: a/b=b/c=c/d=d/a và a+b+c+d khác 0
Chứng minh rằng a.b^19.c^1999=d^2019
Giúp mk vớ ạ mai thi luôn rồi
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\Rightarrow a=b=c=d\)
Ta có: \(VT=a.b^{19}.c^{1999}=d.d^{19}.d^{1999}=d^{2019}=VP\)(đpcm)
thank you bạn gì đó nha
đặt cách giá trị chung thì sao
Cho a,b,c ≠0 thảo mãn a+b+c=\(\sqrt{\text{2019}}\);\(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=0
Tính A=\(a^2+b^2+c^2\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=\sqrt{2019}\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)
\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)
(Chuyên Toán HN 2016) Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^3 + b^3 + c^3 = 3abc và abc khác 0. Tính giá trị của biểu thức: P = a.b^2/(a^2 + b^2 - c^2) + b.c^2/(b^2 + c^2 - a^2) + c.a^2/(c^2 + a^2 - b^2)
từ a^3 + b^3 + c^3 =3abc => a+b+c = 0
=> a+b= -c <=> c^2 = (a+b)^2
tương tự với -b và -a
=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2
= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0
Cho a,b,c,d khác 0 thỏa: a+b=c+d và a^2+b^2=c^2=d^2
Cm a^2016+b^2016=c^2016+d^2016
Cho \(\dfrac{a+b+c-d}{d}\)=\(\dfrac{b+c+d-a}{a}\)=\(\dfrac{c+d+a-b}{b}\)=\(\dfrac{d+a+b-c}{c}\), (a+b+c+d) khác 0
tính giá trị của biểu thức: P=(1+\(\dfrac{b+c}{a}\))(1+\(\dfrac{c+d}{b}\))(1+\(\dfrac{d+a}{c}\))(1+\(\dfrac{a+b}{d}\))
Lời giải:
Áp dụng TCDTSBN:
$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$
$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$
$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$
$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$
Khi đó:
\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a+b+c khác 0
tính giá trị biểu thức :
\(P=\dfrac{a^{20}+b^{11}+c^{1982}}{b^{2013}}\)
Cho biết a/b=b/c=c/a, a+b+c khác 0
Tính giá trị biểu thức (a^49*b^51)/c^100
cho a.c=b^2;b.d=c^2 và a,b,c,d khác 0. Chừng minh rằng: a^3.d+b^3.d+c^3.d=a.b^3+c^3.a+a.d^3
Cho ac=b2; ab=c2; a+b+c≠0 và a,b,c là các số khác 0
Tính giá trị biểu thức: P=\(\dfrac{a^{555}}{b^{222}.c^{333}}+\dfrac{b^{555}}{c^{222}.a^{333}}+\dfrac{c^{555}}{a^{222}.b^{333}}\)