\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125};\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(z-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(z-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(z-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Rightarrow z-\dfrac{2}{15}=\dfrac{2}{5}\)
\(z=\dfrac{2}{5}+\dfrac{2}{15}\)
\(z=\dfrac{8}{15}\)
Ta có: \(\left(z-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\Leftrightarrow\left(z-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Leftrightarrow z-\dfrac{2}{15}=\dfrac{2}{5}\)
\(\Leftrightarrow z=\dfrac{2}{5}+\dfrac{2}{15}=\dfrac{6}{15}+\dfrac{2}{15}\)
hay \(z=\dfrac{8}{15}\)
Vậy: \(z=\dfrac{8}{15}\)
Thu gọn \(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-125}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\cdot\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{5\left(x+1\right)\left(x-5\right)}-\dfrac{\left(x+3\right)\cdot3\left(x+1\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{x+5}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{4\left(x+3\right)^2+\left(x+5\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4x^2+24x+36+x^2+10x+25-x^2-2x-1}{\left(x+1\right)\cdot\left(x+5\right)}\)
\(=\dfrac{4x^2+32x+60}{\left(x+1\right)\left(x+5\right)}=\dfrac{4\left(x^2+8x+15\right)}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)\cdot\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}=\dfrac{4x+12}{x+1}\)
\(a,\dfrac{-8}{5}:\left(1+\dfrac{2}{3}\right)\) \(b,\dfrac{7}{5}x\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
\(c,\dfrac{1}{3}:\left(\dfrac{2}{9}-\dfrac{7}{8}\right)\) \(d,\left(\dfrac{1}{6}-\dfrac{4}{5}\right):\dfrac{7}{5}\)
Giúp mik nha:>>
A -\(\dfrac{24}{25}\)
B -\(\dfrac{5}{21}\)
C -\(\dfrac{24}{47}\)
D -\(\dfrac{19}{42}\)
tick cho mk
TÍNH
a.\(-\dfrac{5}{4}x^4.\dfrac{8}{15}x\) b.\(-2x\left(\dfrac{3}{4}x^2-x+\dfrac{1}{2}\right)\) c.\(x\left(x-\dfrac{1}{2}\right)-\left(x-2\right)\left(x+3\right)\)
a. \(\dfrac{-5}{4}\) x4 . \(\dfrac{8}{15}\) x = \(\dfrac{-40}{60}\) x5 = \(\dfrac{-2}{3}\) x5
b. -2x\(\left(\dfrac{3}{4}x^2-x+\dfrac{1}{2}\right)\) = -\(\dfrac{-3}{2}\) x3 + 2x3 - x
c. \(x\left(x-\dfrac{1}{2}\right)\) - (x - 2)(x + 3)
= x2 - \(\dfrac{1}{2}\) x - x2 - 3x - 2x - 6
\(\left(x-\dfrac{1}{3}\right)^3=\dfrac{-8}{125}\)
Đây nha:
\(\left(x-\dfrac{1}{8}\right)^3=-\dfrac{8}{125}\)
\(\left(x-\dfrac{1}{8}\right)^3=\left(\dfrac{-2}{5}\right)^3\)
\(\Rightarrow x-\dfrac{1}{8}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}+\dfrac{1}{8}=\dfrac{-16}{40}+\dfrac{5}{40}\)
\(x=\dfrac{-11}{40}\)
\(#WendyDang\)
\(\left(x-\dfrac{1}{3}\right)^3=\dfrac{-8}{125}\)
\(\left(x-\dfrac{1}{3}\right)^3=\left(\dfrac{-2}{5}\right)^3\)
\(\Rightarrow x-\dfrac{1}{3}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}+\dfrac{1}{3}=\dfrac{-6}{15}+\dfrac{5}{15}\)
\(x=\dfrac{-1}{15}\)
mình nhầm,phải là\(\left(x-\dfrac{1}{8}\right)^3=-\dfrac{8}{125}\)
tìm x
a,\(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
b\(\left(4x-3\right).\left(\dfrac{5}{4}x+2\right)=0\)
c\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
d\(\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\dfrac{8}{125}\)
giúp mình nhé mình đang cần gấp
a/ \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{2}x=\dfrac{29}{20}\)
\(\Leftrightarrow x=\dfrac{29}{10}\)
Vậy ...
b/ \(\left(4x-3\right)\left(\dfrac{5}{4}x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{8}{5}\end{matrix}\right.\)
Vậy .....
c/ \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\Leftrightarrow\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=-\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=-\dfrac{19}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-\dfrac{38}{21}\end{matrix}\right.\)
Vậy ......
d/ \(\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\dfrac{8}{125}\)
\(\Leftrightarrow\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Leftrightarrow\dfrac{3}{5}x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{9}{10}\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a. \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{4}\)
\(\dfrac{3}{6}x=\dfrac{5}{4}+\dfrac{1}{5}\)
\(\dfrac{3}{6}x=\dfrac{29}{20}\)
\(x=\dfrac{29}{20}:\dfrac{3}{6}\)
\(x=\dfrac{29}{10}\)
Vậy...
b. \(\left(4x-3\right).\left(\dfrac{5}{4}x+2\right)=0\)
\(\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-8}{5}\end{matrix}\right.\)
Vậy ...
c. \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=1,5+\dfrac{3}{4}\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{-9}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=\dfrac{-19}{12}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=\dfrac{-38}{21}\end{matrix}\right.\)
Vậy...
cho bieu thuc
P\(\left(x\right)=\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-125}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
Tim gia tri nguyen cua x de P(x) co gia tri nguyen
\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)
Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)
=>\(8x+34⋮x^2+6x+5\)
=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)
=>\(x\in\left\{-2;1\right\}\)
1.Tính :
a) 1253 : 57
b) \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
c) 3 - \(\left(-\dfrac{7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
d) \(\dfrac{45^{10}.5^{20}}{75^{15}}\)
a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)
b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)
=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)
= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)
c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)
= 2 + 1=3
d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)
= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)
Tính nhanh A=\(\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right).....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....0......\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=0\)